Synthesis of β-dimorphecolic acid exploiting highly stereoselective reduction of a side-chain carbonyl group in a π-allyltricarbonyliron lactone complex

Steven V. Ley* and G raham M eek
Department of C hemistry, U niversity of Cambridge, Lensfield R oad, Cambridge UK, CB2 1EW

Abstract

A highly enantioselective synthesis of β-dimorphecolic acid 1 is reported. The synthesis features a diastereoselective reduction of the ketone 4, in which the tricarbonyliron lactone tether induces a 1,5 transfer of chirality, followed by a stereoselective decarboxylation to create all the stereochemical elements of 1 . Selective oxidation of the primary alcohol in the diol 17 serves to introduce the acid functionality.

Introduction

β-D imorphecolic acid, $\mathbf{1}$, which was first isolated from the seed oil of Dimorphotheca aurantiaca, ${ }^{1}$ and its diene congener, α-dimorphecolic acid 2, belong to a family of linoleic acid

1

2
metabolites that exhibit a wealth of biological properties. ${ }^{2}$ Owing to their lipid nature, long-chain fatty acids play a vital role in maintaining cellular properties ${ }^{3}$ and consequently can elicit a variety of biological responses. This is exemplified by α dimorphecolic acid, which has been reported to be an inhibitor of acetylcholine esterase (ACE) ${ }^{4}$ and aromatase, ${ }^{5}$ a calcium specific ionophore, ${ }^{6}$ as well as being implicated in the pathogenesis of familial M editerranean fever. ${ }^{7}$ Conversely, little is known of the biological properties associated with β-dimorphecolic acid. ${ }^{2}$ This is related to the difficulty in cultivating Dimorphotheca aurantiaca seeds and isolating the natural product. We therefore undertook a synthesis of β dimorphecolic acid which we now report herein in full. ${ }^{8}$
We recently showed that π-allyltricarbonyliron lactone complexes ${ }^{9}$ bearing ketone ${ }^{10}$ groups in the side-chain undergo diastereoselective addition reactions with a wide range of organoaluminium reagents. In this manner, alkyl, alkenyl, alkynyl and phenyl groups were readily introduced such that the obtained tertiary alcohol adducts were of $>95 \%$ de We also observed that the use of organoaluminium reagents possessing β hydrogen atoms led, in minor amounts, to the formation of by-products in which the side-chain carbonyl group had been reduced. By exploiting this pattern of behaviour, we were able to utilise triisobutylaluminium as an efficient reducing agent for the side-chain carbonyl group. ${ }^{11} \mathrm{M}$ oreover, the reduction occurred in a highly diastereoselective fashion to provide secondary alcohols with de $>95 \%$. The stereochemical outcome of addition reactions to the ketone-containing complexes, determined by X-ray crystallographic analysis and by correlation of derivatives with compounds of known relative configurations, revealed that nucleophilic attack occurs anti to the bulky tricarbonyliron unit preferentially on the s-cis conformer. The initial adducts obtained from reaction with the organoaluminium reagents can be smoothly decarboxylated to form stereodefined
η^{4}-dienetricarbonyliron complexes with excellent preservation of stereochemical integrity. ${ }^{10} \mathrm{M}$ oreover, as these reactions can be performed on enantiomerically enriched material, ${ }^{10}$ this route affords masked dienols of high stereochemical purity and complements established methodology. ${ }^{12}$ We therefore proposed to use this chemistry to construct the stereochemical elements present in β-dimorphecolic acid.

Scheme 1 Retrosynthetic analysis for β-dimorphecolic acid 1
The retrosynthetic analysis to $\mathbf{1}$ is outlined in Scheme 1. We envisaged that selective oxidation of the primary alcohol released by decomplexation and deprotection of the η^{4} dienetricarbonyliron complex $\mathbf{3}$ would provide the acid functionality present in the target molecule. Reduction of the ketone group in the π-allyltricarbonyliron lactone complex 4 followed by decarboxylation would afford this masked dienol 3. The immediate precursor for the π-allyltricarbonyliron lactone complex 4, the epoxy enone 5, was to be derived from the phosphonate 6 and the aldehyde obtained by oxidation of the alcohol function in the epoxy alcohol 7. Application of the Sharpless asymmetric epoxidation ${ }^{13}$ protocol establishes the desired molecular asymmetry.

Results and discussion

Catalytic asymmetric epoxidation of (2E)-oct-2-en-1-ol, under conditions described by Sharpless, ${ }^{14}$ using D-diethyl tartrate, provided the epoxy alcohol 7 in 70% yield (Scheme 2). Formation of the corresponding M osher ester, ${ }^{15}$ under standard

$>95 \%$ ee

11

Scheme 2 Reagents and conditions: i, CISiPh $\mathrm{But}^{\mathrm{t}}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMAP}(10 \mathrm{~mol} \%), \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$ to room temp., $40 \mathrm{~min}(94 \%)$; ii, ($\left.\mathrm{Et}_{2} \mathrm{O}\right)_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}_{2}-$ $\mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}, \mathrm{NaH}, \mathrm{THF}, 0^{\circ} \mathrm{C}$ to room temp., 45 min , then $\mathrm{BuLi}, 0^{\circ} \mathrm{C}, 50 \mathrm{~min}$, then $8,0^{\circ} \mathrm{C}$ to room temp., $16 \mathrm{~h}(70 \%)$; iii, $\mathrm{Ti}(\mathrm{OPri})_{4}(15 \mathrm{~mol} \%)$, D-DET
 $0^{\circ} \mathrm{C}, 40 \mathrm{~min}$, then $9,-78{ }^{\circ} \mathrm{C}, 50 \mathrm{~min}(66 \%)$; vi, $\mathrm{Fe}_{2}(\mathrm{CO}) 9, \mathrm{THF}$, room temp., $3 \mathrm{~h}(64 \%, 4: 10 \mathrm{ca} .3: 1)$; vii, $\mathrm{Bu}_{3}{ }_{3} \mathrm{Al}^{2}, \mathrm{C}_{6} \mathrm{H}_{6}$-toluene ($4: 1$), $0^{\circ} \mathrm{C}, 35 \mathrm{~min}$ ($53 \% 11,18 \% 12$)
conditions, and comparison with racemic material revealed that 7 had an ee $>95 \%$, as determined by $500 \mathrm{M} \mathrm{Hz}^{1} \mathrm{H} N \mathrm{~N}$ R analysis. Treatment of 7 with in situ-generated Collins' reagent ${ }^{16}$ smoothly afforded the aldehyde 9 in 85% yield. The preparation of the phosphonate 6 relied upon the alkylation of the dianion of diethyl (2-oxopropyl) phosphonate with the alkyl bromide 8, which was obtained from 7-bromoheptanol in 94% yield in the standard manner. Deprotonation of diethyl (2-oxopropyl)phosphonate sequentially with sodium hydride and butyllithium, according to the method of Grieco and Pognowski, ${ }^{17}$ and alkylation with the bromide 8 provided exclusively the α substituted phosphonate 6 in 70% yield.

With the epoxy aldehyde 9 and the functionalised phosphonate 6 in hand, we examined their coupling to form the epoxy enone precursor 5 to the π-allyltricarbonyliron lactone complexes. It soon became apparent that the nature of the counterion of the base used to deprotonate the phosphonate 6 played a critical role in determining the course of the subsequent H orner-Wittig homologation. Thus, optimum conditions required the use of potassium bis(trimethylsilyl)amide as base to provide exclusively the epoxy enone 5 in 66% yield; application of the M asamune-Roush procedure, ${ }^{18}$ or the use of bases associated with sodium or lithium resulted in reduced isolated yields of 5 .

Treatment of 5 with $\mathrm{Fe}_{2}(\mathrm{CO})_{9}$ in THF ${ }^{19}$ gave two diastereoisomeric π-allyltricarbonyliron lactone complexes, endo-4 and exo-10, in 64% combined yield and in a ratio of ca. 3:1, respectively. Reduction of the side-chain carbonyl groups of the inseparable complexes 4 and 10 with triisobutylaluminium in benzene-toluene $(4: 1)$ at $0^{\circ} \mathrm{C}$ afforded the corresponding alcohols 11 and 12, respectively, as an inseparable mixture in 71\% combined yield. A nalysis of the mixture by HPLC and 500 $\mathrm{M} \mathrm{Hz}^{1} \mathrm{H}$ N M R spectroscopy indicated that both $\mathbf{1 1}$ and $\mathbf{1 2}$ had a de $>95 \%$.

Whilst $\mathbf{1 1}$ and $\mathbf{1 2}$ could be separated on an analytical scale by HPLC, use of this means of purification on a large scale would be time consuming and tedious. We therefore briefly investigated derivatising the alcohol functionality as the corresponding acetate. R ather than merely providing a means of obtaining diastereoisomerically pure material, orthogonal differentiation of the primary and secondary alcohols present in the required complex 13 may potentially allow the synthesis to proceed through this intermediate. Formation of the acetates 13 and 14, from 11 and 12 respectively, in the standard manner occurred smoothly in 81% combined yield (Scheme 3). Purification by standard flash column chromatography provided diastereoisomerically pure complexes. To effect decarboxylation, the acetate 13 was treated with barium hydroxide in wet methanol ${ }^{20}$ to afford the η^{4}-dienetricarbonyliron complex 15 in 15% yield, with the low yield being attributed to the formation of material which has so far eluded structural elucidation. G iven the poor efficiency of this reaction, the acetate group in 13 was hydrolysed using $\mathrm{K}_{2} \mathrm{CO}_{3}$ in methanol to afford the alcohol 11 in 53% yield, with no improvement in the yield being observed upon the use of a variety of reagents and conditions. Thus, utilisation of the acetates $\mathbf{1 3}$ and $\mathbf{1 4}$ was not synthetically appealing, and the diastereoisomeric alcohols $\mathbf{1 1}$ and $\mathbf{1 2}$ were hence separated by preparative HPLC.

In order to gain insight into the stereochemical outcome of the reduction process, a N OESY experiment was carried out on the mixture of ketones 4 and 10 . This clearly revealed that the s-cis conformation was exclusively adopted in the ground state; irradiation of the protons α to the carbonyl group resulted in enhancements of only the terminal protons of the allyl system. On the basis of our previous work, ${ }^{10}$ this strongly suggests that the sense of the newly generated stereocentre in 11 would therefore be (S) whilst in 12 the (R) stereochemistry would be produced. Formation of the M osher ester of 11,

Scheme 3 Reagents and conditions: $\mathrm{i}, \mathrm{Ac}_{2} \mathrm{O}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMAP}(10 \mathrm{~mol} \%)$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 20 \mathrm{~min}(65 \% 13,16 \% 12) ; \mathrm{ii}, \mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{M} \mathrm{eOH}, 0^{\circ} \mathrm{C}, 1 \mathrm{~h}$ then room temp., $2 \mathrm{~h}(53 \%)$; iii, $\mathrm{Ba}(\mathrm{OH})_{2}, \mathrm{MeOH}$, room temp., 5 min (15\%)
under standard conditions, and comparison with the racemate, indicated that 11 had $>95 \%$ ee, as determined by $500 \mathrm{M} \mathrm{Hz}^{1} \mathrm{H}$ NM R analysis. Thus, in proceeding from the epoxy alcohol 7, there had been no detectable loss of enantiopurity.

Treatment of the required diastereoisomer 11 with barium hydroxide in wet methanol provided the η^{4}-dienetricarbonyliron complex 3 in 78% yield as a single diastereoisomer and geometric isomer at the diene moiety (Scheme 4). This result is in full accord with the proposed mechanism, ${ }^{20}$ in which hydroxide attack occurs on one of the carbonyl groups with concomitant cleavage of the lactonetether. Bond rotation resulting in an endo- to exo-transposition of the pentyl unit then permits a
facile decarboxylation and antiperiplanar elimination of $\mathrm{H}_{2} \mathrm{O}$ to occur affording, in the case of endo lactone complexes like 11, the corresponding (E, E)- η^{4}-dienetricarbonyliron complex. Unmasking of the diene unit provided some interesting and unexpected results. Cleavage of the silyl ether in $\mathbf{3}$ using HFpyridine which occurred in 92% yield to provide 16 was followed by exposure to basic methanolic hydrogen peroxide ${ }^{21}$ to rapidly afford the diene 17 in 94% yield. The coupling constants observed between the vinylic protons, 15.1 and 15.2 Hz , are in accord with the assigned E, E stereochemistry and this stereochemical outcome is consistent with our previous work. ${ }^{10} \mathrm{~W}$ hen the complex $\mathbf{3}$ was exposed to the same decomplexation reagent system, however, the reaction was sluggish and the diene $\mathbf{2 0}$ was isolated in 46% yield, with the remainder being unreacted starting material.
In order to attain the required level of oxidation for β dimorphecolic acid we initially subjected the diol 17 to oxidation using PtO_{2} and oxygen, conditions reported to selectively oxidise primary alcohols to acids in the presence of secondary allylic alcohols. ${ }^{22}$ In our case, however, a mixture of oxidation products was obtained and the selectivity did not alter upon varying the reaction temperature. A stepwise oxidation approach to achieve formation of the acid therefore seemed more beneficial. Treatment of the diol 17 with $\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}$ in benzene ${ }^{23}$ provided exclusively the aldehyde 18 in 73% yield (Scheme 4). Oxidation of the aldehyde using buffered sodium hypochlorite, in the presence of 2-methylbut-2-ene as a radical scavenger, ${ }^{24}$ afforded the crude acid which was esterified with diazomethane to provide the corresponding methyl ester 19 in 49\% overall yield. Following chromatographic purification, hydrolysis of the ester 19 employing LiOH in $\mathrm{DME}-\mathrm{H}_{2} \mathrm{O}$ occurred in 85% yield to afford β-dimorphecolic acid 1 , which was identical in every respect to that reported in the literature ${ }^{25}$
The high levels of selectivity observed in this synthesis illustrate the ability of the tricarbonyliron lactone tether of π-allyltricarbonyliron lactone complexes to exert control over distinct elements of stereochemistry. Thus, a 1,5 -asymmetric induction creates the stereogenic centre, whilst a highly stereoselective decarboxylation provides the E, E diene moiety. This short, highly stereoselective synthesis of β-dimorphecolic acid

Scheme 4 Reagents and conditions: $\mathrm{i}, \mathrm{Ba}(\mathrm{OH})_{2}, \mathrm{M} \mathrm{eOH}$, room temp., $5 \mathrm{~min}(78 \%)$; ii, $\mathrm{HF} \cdot$ pyridine, pyridine, TH F, room temp., $18 \mathrm{~h}(92 \%)$; iii, $\mathrm{H}_{2} \mathrm{O}_{2}$, $\mathrm{NaOH}, \mathrm{MeOH}, 0^{\circ} \mathrm{C}, 6 \mathrm{~h}(46 \%)$; iv, $\mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{NaOH}, \mathrm{MeOH}, 0^{\circ} \mathrm{C}, 25 \mathrm{~min}(94 \%)$; v, Ru($\left.\mathrm{PPh}_{3}\right)_{3} \mathrm{Cl}_{2}, \mathrm{C}_{6} \mathrm{H}_{6}$, room temp., $22 \mathrm{~h}(73 \%)$; vi, $\mathrm{NaOCl}, \mathrm{K} \mathrm{H}_{2} \mathrm{PO}_{4}$, 2-methylbut-2-ene, $\mathrm{Bu}^{\mathrm{t}} \mathrm{OH}-\mathrm{H}_{2} \mathrm{O}(1: 1)$, room temp., 1 h , then $\mathrm{CH}_{2} \mathrm{~N}_{2}, \mathrm{Et}_{2} \mathrm{O}$, room temp. (49%); vii, $\mathrm{LiOH}, \mathrm{DME}-\mathrm{H}_{2} \mathrm{O}(3: 1), 0^{\circ} \mathrm{C}, 30 \mathrm{~min}$ then room temp., 3 h (85\%)
once again demonstrates the utility of π-allyltricarbonyliron lactone complexes in organic synthesis.

Experimental

${ }^{1} \mathrm{H}$ NMR Spectra were recorded in CDCl_{3}, unless otherwise stated, on Bruker A M -200, Bruker A M -400 or Bruker DR X 500 spectrometers and are reported as follows: chemical shift, δ (ppm) (number of protons, multiplicity, coupling constant J and assignment). Residual protic solvent $\mathrm{CHCl}_{3}\left(\delta_{\mathrm{H}}=7.26\right.$ ppm) was used as the internal reference and coupling constants are quoted in $\mathrm{Hz} .{ }^{13} \mathrm{C} \mathrm{N} M \mathrm{R}$ Spectra were recorded in CDCl_{3}, unless otherwise stated, at 100 MHz or 50 MHz on Bruker A M - 400 or Bruker A M - 200 spectrometers, respectively, using the central resonance of $\mathrm{CDCl}_{3}\left(\delta_{\mathrm{c}}=77.0 \mathrm{ppm}\right)$ as the internal reference. Infra-red spectra were recorded as thin films, as solutions in CHCl_{3} or as KBr discs on a Perkin-Elmer 983G or FTIR 1620 spectrometer. M ass spectra were obtained on a K ratos M S890M S spectrometer at the Department of Chemistry, U niversity of Cambridge, and at the EPSRC M ass Spectrometry service at Swansea. M icroanalyses were determined in the microanalytical laboratories at the U niversity of Cambridge. For those cases in which an inseparable mixture of compounds was formed, the data reported were obtained on the mixture. Where considerable assignment of ${ }^{1} \mathrm{H} N \mathrm{MR}$ spectra of individual compounds in mixtures is possible, the interpretation is for each component; in other cases, ${ }^{1} \mathrm{H} N \mathrm{M}$ R spectra are interpreted for the mixture. M elting points were determined on a Reichert hot stage apparatus and are uncorrected. Optical rotations were measured with an Optical A ctivity AA - 1000 polarimeter and $[a]_{D}$ values are given in $10^{-1} \mathrm{deg}$ $\mathrm{cm}^{2} \mathrm{~g}^{-1}$.

F lash column chromatography was carried out using M erck K ieselgel (230-400 mesh) unless otherwise indicated. Preparative HPLC was performed on a Gilson 303 system using Dynamax M acro silica columns equipped with a UV detector set at 254 nm . A nalytical TLC was performed using precoated glass-backed plates (M erck K ieselgel 60 F 254) and visualised by UV, acidic ammonium molybdate(Iv) or acidic potassium permanganate solutions. Petrol refers to light petroleum bp 40$60^{\circ} \mathrm{C}$, which was distilled prior to use, and ether refers to diethyl ether.
All reactions were carried out under an argon atmosphere in oven-dried glassware unless otherwise stated. Reactions involving iron complexes were carried out using degassed solvents, as was flash column chromatography which was performed under a positive pressure of argon. Solvents were degassed by successively evacuating and purging the solvent threetimes with argon whilst simultaneously subjecting the solvent to sonication using an 80 W 55 kHz cleaning bath. Diethyl ether and tetrahydrofuran were distilled from sodium benzophenone ketyl; dichloromethane, benzene and toluene from calcium hydride. Other reagents and solvents were purified using standard procedures. ${ }^{26}$ A queous solutions are saturated unless otherwise specified.

(2R , 3R)-2,3-E poxyoctan-1-ol 7

(2E)-Oct-2-en-1-ol ($9.51 \mathrm{~g}, 74.18 \mathrm{mmol}$) was treated with $\mathrm{D}-$ diethyl tartrate ($2.76 \mathrm{~g}, 13.35 \mathrm{mmol}$), titanium tetraisopropoxide ($3.31 \mathrm{~g}, 11.13 \mathrm{mmol}$), $4 \AA$ molecular sieves $(2.5 \mathrm{~g})$ and tertbutyl hydroperoxide ($49.5 \mathrm{~cm}^{3}$ of a $3 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ solution in 2,2,4-trimethylpentane, 148.5 mmol) according to the literature procedure ${ }^{14}$ to provide the crude epoxy alcohol 7 as a pale yellow oil. Purification by flash column chromatography (eluent petrol-ether 2:3) followed by two recrystallisations from petrol at $0^{\circ} \mathrm{C}$ yielded the epoxy alcohol $7(7.21 \mathrm{~g}, 70 \%)$ which had identical spectroscopic properties to those reported in the literature, ${ }^{14}[\alpha]_{0}^{24}+44.9$ (c 1.12 in CHCl_{3}) $\left\{\mathrm{lit}\right.$., ${ }^{14}$ for enantiomer, $[a]_{0}^{24}-42.7$ (c 4.7 in $\left.\left.\mathrm{CHCl}_{3}\right)\right\}$. The enantiopurity was determined by formation of the M osher ester using (S)-(+)- α -
methoxy- α-(trifluoromethyl)phenylacetyl chloride: ${ }^{1} \mathrm{H}$ NMR spectroscopy indicated the presence of a single diastereoisomer; $\delta_{\mathrm{H}}(500 \mathrm{MHz}) 0.89(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.9,8-\mathrm{H} \times 3), 1.26-1.60(8 \mathrm{H}, \mathrm{m}$, $4-\mathrm{H} \times 2,5-\mathrm{H} \times 2,6-\mathrm{H} \times 2,7-\mathrm{H} \times 2$), $2.84(1 \mathrm{H}, \mathrm{td}, \mathrm{J} 5.6,2.1$, $3-\mathrm{H}$), 3.01 (1 H, ddd, J 5.5, 3.2, 2.1, 2-H), 3.57 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OM}$ e), $4.21\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 12.1,5.5,1-\mathrm{H}_{\mathrm{a}}\right), 4.53\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 12.1,3.2,1-\mathrm{H}_{\mathrm{b}}\right)$, 7.37-7.44 (3 H, m, m-Ph-H, p-Ph-H), 7.53 (2 H, dd, J 7.5, 1.6, o-Ph-H). For comparison, the ${ }^{1} \mathrm{H} N M R$ for the M osher ester prepared from ($\left.2 \mathrm{R}^{*}, 3 \mathrm{R} *\right)-7$: $\delta_{\mathrm{H}}(200 \mathrm{MHz}) 0.89(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.0$, $8-\mathrm{H} \times 3$), $1.15-1.72(8 \mathrm{H}, \mathrm{m}, 4-\mathrm{H} \times 2,5-\mathrm{H} \times 2,6-\mathrm{H} \times 2$, $7-\mathrm{H} \times 2), 2.80-2.84(1 \mathrm{H}, \mathrm{m}, 3-\mathrm{H}), 2.98-3.02(1 \mathrm{H}, \mathrm{m}, 2-\mathrm{H}), 3.57$ ($3 \mathrm{H} \mathrm{s}, \mathrm{OM}$ e), 4.21 ($0.5 \mathrm{H}, \mathrm{dd}, \mathrm{J} 12.1,5.7,1-\mathrm{H}_{\mathrm{a}}$), $4.23(0.5 \mathrm{H}$, $\left.\mathrm{dd}, \mathrm{J} 12.1,5.7,1-\mathrm{H}_{\mathrm{a}} \mathrm{a}^{2}\right), 4.53\left(0.5 \mathrm{H}, \mathrm{dd}, \mathrm{J} 12.1,3.5,1-\mathrm{H}_{\mathrm{b}}\right), 4.58$ (0.5 H , dd, J 12.1, 3.5, 1- $\mathrm{H}_{\mathrm{b}^{\prime}}$), 7.37-7.44 (3 H, m, m-Ph-H, p-Ph-H), 7.49-7.56 (2 H , m, o-Ph-H).

(2S,3R)-2,3-E poxyoctanal 9

Chromium(vi) oxide ($10.59 \mathrm{~g}, 105.9 \mathrm{mmol}$) was added to a solution of pyridine ($17.3 \mathrm{~cm}^{3}, 213.9 \mathrm{mmol}$) in dichloromethane $\left(200 \mathrm{~cm}^{3}\right)$. A fter stirring the solution for 15 min , Celite (15 g) was added and the resultant slurry was stirred for a further 5 min before cooling to $0^{\circ} \mathrm{C}$. A solution of the epoxy alcohol 7 ($1.78 \mathrm{~g}, 12.4 \mathrm{mmol}$) in dichloromethane ($20 \mathrm{~cm}^{3}$) was added via a cannula. A fter warming to room temperature and stirring for a further 45 min , sodium hydrogen sulfate (30 g) and ether (200 cm^{3}) were added and the slurry was vigorously stirred for 15 min . The mixture was filtered through a sandwich of silica$\mathrm{M} \mathrm{gSO}_{4}$-silica and the residue was washed with ether (1000 cm^{3}). Concentration in vacuo followed by flash column chromatography (eluent petrol-ether 20:1) provided the aldehyde 9 as a colourless oil which froze upon placing in a freezer at $-18^{\circ} \mathrm{C}$ (1.50 g , 85\%); $[a]_{D}^{24}+10.0$ (c 0.10 in CHCl_{3}); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1}$ 2957, 2930, 2860, 2733, 1729 ($\mathrm{C}=0$), 1467, 1436, 1380, 1150, 1050, 981 ; $\delta_{\mathrm{H}}(200 \mathrm{M} \mathrm{Hz}) 0.90(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.1,8-\mathrm{H} \times 3), 1.30-1.62$ ($8 \mathrm{H}, \mathrm{m}, 4-\mathrm{H} \times 2,5-\mathrm{H} \times 2,6-\mathrm{H} \times 2,7-\mathrm{H} \times 2$) $3.12(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}$ $6.2,2.0,2-H), 3.21(1 \mathrm{H}, \mathrm{td}, \mathrm{J} 5.3,2.0,3-\mathrm{H}), 9.01(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.2$, $1-\mathrm{H}) ; \delta_{\mathrm{c}}(100 \mathrm{M} \mathrm{Hz}) 198.5,59.2(\mathrm{CH}), 56.8(\mathrm{CH}), 31.4\left(\mathrm{CH}_{2}\right)$, $31.2\left(\mathrm{CH}_{2}\right), 25.4\left(\mathrm{CH}_{2}\right), 22.5\left(\mathrm{CH}_{2}\right), 13.9\left(\mathrm{CH}_{3}\right) ; \mathrm{m} / \mathrm{z}(\mathrm{EI}) 142$ ($\mathrm{M}^{+}, 25 \%$), 113 (52, M - CHO), 83 (72), 71 [100, M $\mathrm{Me}\left(\mathrm{CH}_{2}\right)_{4}$], $69(55), 55(90)$ [Found $\left(\mathrm{M}^{+}\right) 142.0987 . \mathrm{C}_{8} \mathrm{H}_{14} \mathrm{O}_{2}$ requires M , 142.0993].

7-Bromo-1-tert-butyIdiphenylsilyloxyheptane 8

tert-Butyldiphenylsilyl chloride ($14.13 \mathrm{~cm}^{3}, 55.2 \mathrm{mmol}$) was added in a dropwise manner to a solution of 7 -bromoheptan-1ol ($9.81 \mathrm{~g}, 50.2 \mathrm{mmol}$) in dichloromethane ($80 \mathrm{~cm}^{3}$) containing triethylamine ($8.42 \mathrm{~cm}^{3}, 60.2 \mathrm{mmol}$) and 4-dimethylaminopyridine ($605 \mathrm{mg}, 5.0 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. The solution was stirred at $0^{\circ} \mathrm{C}$ for 20 min and then for a further 20 min whilst warming to room temperature. The reaction mixture was poured into aqueous ammonium chloride ($150 \mathrm{~cm}^{3}$) and the layers were separated. The organic phase was washed with aqueous ammonium chloride ($150 \mathrm{~cm}^{3}$) and the combined aqueous phases were extracted with ether ($3 \times 150 \mathrm{~cm}^{3}$). The combined organic phases were washed with brine ($100 \mathrm{~cm}^{3}$) and dried $\left(\mathrm{M} \mathrm{gSO}_{4}\right)$. Concentration in vacuo afforded the crude product which was purified by flash column chromatography (eluent petrol-ether $50: 1$) to provide the silyl ether 8 as a colourless oil ($20.4 \mathrm{~g}, 94 \%$) (Found $\mathrm{C}, 63.68 ; \mathrm{H}, 7.80 . \mathrm{C}_{23} \mathrm{H}_{33} \mathrm{BrOSi}$ requires, $63.87 ; \mathrm{H}$, $7.70 \%)$; $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3070,3049,3013,2931,2857,1589$, 1507, 1486, 1474, 1462, 1428, 1389, 1361, 1264, 1188, 1111, 1029, 1007; $\delta_{\mathrm{H}}(200 \mathrm{M} \mathrm{Hz}) 1.05(9 \mathrm{H}, \mathrm{s}, \mathrm{But}), 1.24-1.59(8 \mathrm{H}, \mathrm{m}$, $3-\mathrm{H} \times 2,4-\mathrm{H} \times 2,5-\mathrm{H} \times 2,6-\mathrm{H} \times 2), 1.84(2 \mathrm{H}$, quintet, J 6.4, $2-\mathrm{H} \times 2$), $3.39(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.8,7-\mathrm{H} \times 2), 3.66(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.4$, 1-H $\times 2$), $7.26-7.43(6 \mathrm{H}, \mathrm{m}, \mathrm{m}-\mathrm{Ph}-\mathrm{H}, \mathrm{p}-\mathrm{Ph}-\mathrm{H}), 7.64-7.71$ ($4 \mathrm{H}, \mathrm{m}, \mathrm{o}-\mathrm{Ph}-\mathrm{H}$); $\delta_{\mathrm{c}}(100 \mathrm{MHz}) 135.5$ (CH), 134.1 (quat. C), $129.5(\mathrm{CH}), 127.5(\mathrm{CH}), 63.8\left(\mathrm{CH}_{2}\right), 33.8\left(\mathrm{CH}_{2}\right), 32.7\left(\mathrm{CH}_{2}\right)$, $32.4\left(\mathrm{CH}_{2}\right), 28.4\left(\mathrm{CH}_{2}\right), 28.1\left(\mathrm{CH}_{2}\right), 26.9\left(\mathrm{CH}_{3}\right), 25.5\left(\mathrm{CH}_{2}\right)$, 19.2 (quat. C); m/z (EI) 377 ([M - But $]^{+}, 82 \%$), 375 (82 , M - Bu ${ }^{t}$), 295 (51, M - HBr), 263 (42), 261 (43), 199 (47), 97
(100, $\left.\mathrm{M}-\mathrm{Bu}^{\mathrm{t}} \mathrm{Ph}_{2} \mathrm{OSi}-\mathrm{HBr}\right), 55$ (78) \{Found ([M $\left.-\mathrm{Bu}^{\mathrm{t}}\right]^{+}$) $375.0786\left({ }^{(79} \mathrm{Br}\right) . \mathrm{C}_{19} \mathrm{H}_{24} \mathrm{BrOSi}$ requires $\left.\mathrm{M}-\mathrm{Bu}^{\mathrm{t}}, 375.0783\right\}$.

Diethyl (10-tert-butyldiphenyIsilyloxy-2-oxodecyl)phosphonate 6 Diethyl (2-oxopropyl)phosphonate ($10.74 \mathrm{~g}, 54.89 \mathrm{mmol}$) was added dropwise to a suspension of sodium hydride [60\% dispersion in oil which was previously washed with dry hexane (3×20 $\left.\mathrm{cm}^{3}\right), 1.45 \mathrm{~g}, 59.56 \mathrm{mmol}$] in tetrahydrofuran ($150 \mathrm{~cm}^{3}$) at $0^{\circ} \mathrm{C}$. A white suspension was initially formed, which dissolved after complete addition of the phosphonate. This solution was stirred for 45 min whilst warming to room temperature. The solution was then recooled to $0^{\circ} \mathrm{C}$ and butyllithium ($41.1 \mathrm{~cm}^{3}$ of a $1.6 \mathrm{~mol} \mathrm{dm}^{-3}$ solution in hexane, 65.76 mmol) was added dropwise over 20 min . A fter further stirring for 30 min at $0^{\circ} \mathrm{C}$ the bromide 8 ($6.81 \mathrm{~g}, 15.72 \mathrm{mmol}$) in tetrahydrofuran ($20 \mathrm{~cm}^{3}$) was added dropwise. The resultant solution was warmed to room temperature over 30 min and stirred for a further 16 h . The reaction was quenched by the slow addition of aqueous ammonium chloride ($30 \mathrm{~cm}^{3}$), and then poured into aqueous ammonium chloride ($200 \mathrm{~cm}^{3}$). Following separation of the layers, the aqueous phase was extracted with ether ($3 \times 100 \mathrm{~cm}^{3}$). The combined organic phases were washed with brine ($100 \mathrm{~cm}^{3}$) and dried $\left(\mathrm{M} \mathrm{gSO}_{4}\right)$ to furnish the crude product after concentration in vacuo. Purification by flash column chromatography (eluent ethyl acetate-petrol 1:1) provided the phosphonate 6 as a pale yellow oil ($5.81 \mathrm{~g}, 70 \%$) (Found $\mathrm{C}, 65.84 ; \mathrm{H}, 8.71 . \mathrm{C}_{30} \mathrm{H}_{47} \mathrm{O}_{5} \mathrm{PSi}$ requires C, $65.90 ; \mathrm{H}, 8.67 \%$); $v_{\text {max }}$ (film)/ $/ \mathrm{cm}^{-1} 3015,2970,2845$, 1716 ($\mathrm{C}=0$) , 1589, 1567, 1472, 1463, 1444, 1428, 1391, 1362, $1256,1111,1027 ; \delta_{\mathrm{H}}(200 \mathrm{M} \mathrm{Hz}) 1.04\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu} \mathrm{u}^{\mathrm{t}}\right), 1.20-1.63$ [18 $\mathrm{H}, \mathrm{m},\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)_{2}, 4-\mathrm{H} \times 2,5-\mathrm{H} \times 2,6-\mathrm{H} \times 2,7-\mathrm{H} \times 2$, $8-\mathrm{H} \times 2,9-\mathrm{H} \times 2$], $2.60(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.2,3-\mathrm{H} \times 2), 3.06(2 \mathrm{H}, \mathrm{d}, \mathrm{J}$ $22.8,1-\mathrm{H} \times 2), 3.64(2 \mathrm{H}, \mathrm{t}, \mathrm{J} .4,10-\mathrm{H} \times 2), 4.13[4 \mathrm{H}$, apparent quintet, J 7.1, $\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)_{2}$], $7.33-7.42(6 \mathrm{H}, \mathrm{m}, \mathrm{m}-\mathrm{Ph}-\mathrm{H}, \mathrm{p}-$ Ph-H), 7.63-7.68(4H, m, o-Ph-H); $\delta_{\mathrm{c}}(100 \mathrm{M} \mathrm{Hz}) 202.2$ (d, J 6.2, $\mathrm{C}=0$), 135.6 (CH), 134.2 (quat. C), 129.5 (CH), 127.6 (CH), $64.0\left(\mathrm{CH}_{2}\right), 62.5\left(\mathrm{~d}, \mathrm{~J} 6.2, \mathrm{CH}_{2}\right), 44.1\left(\mathrm{CH}_{2}\right), 42.9(\mathrm{~d}, \mathrm{~J} 127.1$, $\left(\mathrm{CH}_{2}\right), 32.6\left(\mathrm{CH}_{2}\right), 29.3\left(\mathrm{CH}_{2}\right), 29.2\left(\mathrm{CH}_{2}\right), 28.9\left(\mathrm{CH}_{2}\right), 26.9$ $\left(\mathrm{CH}_{3}\right), 25.7\left(\mathrm{CH}_{2}\right), 23.4\left(\mathrm{CH}_{2}\right), 19.2$ (quat. C), $16.3(\mathrm{~d}, \mathrm{~J} 6.1$, CH_{3}); m/z (EI) 489 ($\left[\mathrm{M}-\mathrm{Bu}^{\mathrm{t}}\right]^{+}, 100 \%$), 423 (17), 309 (11), 199 (38), 183 (19), 128 (17), 97 (22), 78 (21), 55 (14) \{Found ($\left[\mathrm{M}-\mathrm{Bu}^{t}\right]^{+}$) 489.2221. $\mathrm{C}_{26} \mathrm{H}_{38} \mathrm{O}_{5}$ PSi requires $\mathrm{M}-\mathrm{Bu}^{\mathrm{t}}$, 489.2226\}.

(10E ,12R ,13R)-1-tert-B utyIdiphenylsilyloxy-12,13-epoxy-octadec-10-en-9-one 5

Potassium bis(trimethylsilyl)amide ($3.15 \mathrm{~cm}^{3}$ of a 0.5 mol dm^{-3} solution in toluene, 1.58 mmol) was added dropwise to the phosphonate $6(905 \mathrm{mg}, 1.65 \mathrm{mmol})$ in tetrahydrofuran $\left(2 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$. A fter continued stirring at this temperature for 40 min the solution was cooled to $-78^{\circ} \mathrm{C}$ and the aldehyde $9(203 \mathrm{mg}$, 1.43 mmol) in tetrahydrofuran ($2 \mathrm{~cm}^{3}$) was added dropwise. The reaction was quenched by the slow addition of methanol-water $\left(2 \mathrm{~cm}^{3} ; 1: 5\right)$ after further stirring at $-78^{\circ} \mathrm{C}$ for 50 min . The reaction mixture was poured into saturated ammonium chloride ($20 \mathrm{~cm}^{3}$) and the layers were separated. The organic phase was washed with saturated ammonium chloride ($20 \mathrm{~cm}^{3}$) and the combined aqueous phases were extracted with ether (3×20 cm^{3}). The combined organic phases were washed with brine (30 cm^{3}), dried ($\mathrm{M} \mathrm{SSO}_{4}$) and concentrated in vacuo. Purification by flash chromatography (eluent petrol-ether 10:1; column preequilibrated with petrol-ether 10:1 containing 2% triethylamine) afforded the epoxy enone 5 as a pale yellow oil (505 mg , 66%) (Found C, 76.15; H, 9.31. $\mathrm{C}_{34} \mathrm{H}_{50} \mathrm{O}_{3}$ Si requires $\mathrm{C}, 76.35$; $\mathrm{H}, 9.43 \%$); $[a]_{8}^{24}+9.0$ (c 4.95 in CHCl_{3}); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1}$ 3070, 3049, 2929, 2856, 1698 ($\mathrm{C}=0$), 1632 ($\mathrm{C}=\mathrm{C}$), 1463, 1427, 1361, 1189, 1111, 976,$823 ; \delta_{\mathrm{H}}(400 \mathrm{M} \mathrm{Hz}) 0.89$ ($3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.1,18-$ $\mathrm{H} \times 3), 1.03\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\mathrm{t}}\right), 1.21-1.67(20 \mathrm{H}, \mathrm{m}, 2-\mathrm{H} \times 2,3-\mathrm{H} \times 2$, $4-\mathrm{H} \times 2, \quad 5-\mathrm{H} \times 2,6-\mathrm{H} \times 2, \quad 7-\mathrm{H} \times 2,14-\mathrm{H} \times 2, \quad 15-\mathrm{H} \times 2$, $16-\mathrm{H} \times 2,17-\mathrm{H} \times 2), 2.52(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.4,8-\mathrm{H} \times 2), 2.89(1 \mathrm{H}$, td, J 5.6, 1.9, 13-H), $3.20(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 6.9,1.9,12-\mathrm{H}), 3.64(2 \mathrm{H}, \mathrm{t}$,

J $6.5,1-\mathrm{H} \times 2), 6.38(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 15.9,10-\mathrm{H}), 6.51(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 15.9$, 6.9, 11-H), 7.34-7.43 ($6 \mathrm{H}, \mathrm{m}, \mathrm{m}-\mathrm{Ph}-\mathrm{H}, \mathrm{p}-\mathrm{Ph}-\mathrm{H}$), 7.66 (4 H , dd, J 7.7, 1.5, o-Ph-H); $\delta_{\mathrm{C}}(100 \mathrm{M} \mathrm{Hz}$) 199.7, 142.5 (CH), 135.6 (CH), 134.2 (quat. C), $131.3(\mathrm{CH}), 129.5(\mathrm{CH}), 127.6(\mathrm{CH})$, $64.0\left(\mathrm{CH}_{2}\right), 61.6(\mathrm{CH}), 56.7(\mathrm{CH}), 40.7\left(\mathrm{CH}_{2}\right), 32.6\left(\mathrm{CH}_{2}\right), 31.9$ $\left(\mathrm{CH}_{2}\right), 31.5\left(\mathrm{CH}_{2}\right), 29.3\left(\mathrm{CH}_{2}\right), 29.2\left(\mathrm{CH}_{2} \times 2\right), 26.9\left(\mathrm{CH}_{3}\right), 25.7$ $\left(\mathrm{CH}_{2}\right), 25.5\left(\mathrm{CH}_{2}\right), 24.0\left(\mathrm{CH}_{2}\right), 22.5\left(\mathrm{CH}_{2}\right), 19.2$ (quat. C$), 13.9$ (CH_{3}); m/z (EI) 477 ([M - Bu' $\left.]^{+}, 85 \%\right), 461$ (62), 377 (65), 199 (90), 183 (30), $139\left[25, \mathrm{M}-\mathrm{C}(\mathrm{O})\left(\mathrm{CH}_{2}\right)_{8} \mathrm{OSiPh}_{2} \mathrm{Bu}^{\mathrm{t}}\right], 78$ (35) \{Found $\left(\left[\mathrm{M}-\mathrm{Bu}^{\dagger}\right]^{+}\right.$) 477.2829. $\mathrm{C}_{30} \mathrm{H}_{41} \mathrm{O}_{3} \mathrm{Si}$ requires $\mathrm{M}-\mathrm{Bu}^{\mathrm{t}}$, 477.2825\}.

[(10E ,12S, 13R)-1-tert-B utyldiphenyIsilyloxy-13-(carbonyloxyκ к) -9-ox0-($10,11,12-\eta)$-octadec-10-en-12-yl]tricarbonyliron 4 and $[(10 E, 12 R, 13 R)$-1-tert-butyIdipheny Isilyloxy-13-(carbonyloxy-кС)-9-ox0-(10,11,12-ๆ)-octadec-10-en-12ylltricarbonyliron 10

The epoxy enone 5 ($740 \mathrm{mg}, 1.38 \mathrm{mmol}$) was added in one portion to a suspension of nonacarbonyldiiron ($1.064 \mathrm{~g}, 2.92$ mmol) in degassed tetrahydrofuran ($25 \mathrm{~cm}^{3}$) which had been vigorously stirred for 10 min . A fter further stirring for 3 h , toluene ($6 \mathrm{~cm}^{3}$) was added, the solution was filtered through a pad of Celite and the residue was washed with ether $\left(100 \mathrm{~cm}^{3}\right)$. Concentration in vacuo afforded the crude products as a solution in toluene which were purified immediately by flash column chromatography (eluent petrol to petrol-ether 3:1 gradient) to afford the complexes $\mathbf{4}$ and $\mathbf{1 0}$ as an inseparable mixture of dark yellow oils in the ratio $\sim 3: 1$, respectively, as determined by ${ }^{1}$ H NM R spectroscopy ($620 \mathrm{mg}, 64 \%$); $v_{\max }$ (film) $/ \mathrm{cm}^{-1} 3071$, 3015, 2931, 2857, 2091 (CO), 2043 (CO), 1672 (C=O), 1590, 1497, 1463, 1428, 1361, 1306, 1111; $\delta_{\mathrm{H}}(400 \mathrm{M} \mathrm{Hz}$) (for 4) 0.88 $(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.7,18-\mathrm{H} \times 3), 1.04\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\mathrm{t}}\right), 1.20-1.68(20 \mathrm{H}$, $\mathrm{m}, 2 \mathrm{H} \times 2,3-\mathrm{H} \times 2,4-\mathrm{H} \times 2,5-\mathrm{H} \times 2,6 \mathrm{H} \times 2,7-\mathrm{H} \times 2$, $14-\mathrm{H} \times 2,15-\mathrm{H} \times 2,16-\mathrm{H} \times 2,17-\mathrm{H} \times 2), 2.69(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.4$, $8-\mathrm{H} \times 2$), $3.64(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.4,1-\mathrm{H} \times 2), 3.83(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 11.2,10-$ H), 4.26-4.38 ($1 \mathrm{H}, \mathrm{m}, 13-\mathrm{H}$), 5.01 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.6,4.5,12-\mathrm{H}$), 5.54 (1 H , dd, J 11.2, 8.6, 11-H), 7.35-7.43 ($6 \mathrm{H}, \mathrm{m}, \mathrm{m}-\mathrm{Ph}$-H , p-Ph-H), 7.66 ($4 \mathrm{H}, \mathrm{dd}, \mathrm{J} 7.2,1.6,0-\mathrm{Ph}-\mathrm{H}$); $\delta_{\mathrm{H}}(400 \mathrm{M} \mathrm{Hz}$) (for 10) $0.88(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.7,18-\mathrm{H} \times 3), 1.04\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu} \mathrm{u}^{\mathrm{t}}\right), 1.20-1.68(20 \mathrm{H}$, $\mathrm{m}, 2-\mathrm{H} \times 2,3-\mathrm{H} \times 2,4-\mathrm{H} \times 2,5-\mathrm{H} \times 2,6-\mathrm{H} \times 2,7-\mathrm{H} \times 2,14-$ $\mathrm{H} \times 2,15-\mathrm{H} \times 2,16-\mathrm{H} \times 2,17-\mathrm{H} \times 2$), $2.66(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.4,8-$ $\mathrm{H} \times 2$), $3.64(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.4,1-\mathrm{H} \times 2)$, $3.72(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 11.0,10-\mathrm{H})$, $4.04(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.5,13-\mathrm{H}), 4.84(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.2,12-\mathrm{H}), 5.72(1 \mathrm{H}$, dd, J 11.0, 8.2, 11-H) 7.35-7.43 (6H, m, m-Ph-H , p-Ph-H), 7.66 ($4 \mathrm{H}, \mathrm{dd}, \mathrm{J} 7.2,1.6,0-\mathrm{Ph}-\mathrm{H}$); $\delta_{\mathrm{c}}(100 \mathrm{M} \mathrm{Hz}$) (for 4) 208.0, 205.0, 204.3, 202.8, 199.8, 135.6 (CH), 134.2 (quat. C), 129.5 (CH), 127.6 (CH), 92.2 (CH), 84.3 (CH), 76.9 (CH), $65.9(\mathrm{CH}), 63.9$ $\left(\mathrm{CH}_{2}\right), 43.4\left(\mathrm{CH}_{2}\right), 36.7\left(\mathrm{CH}_{2}\right), 32.6\left(\mathrm{CH}_{2}\right), 31.5\left(\mathrm{CH}_{2}\right), 31.4$ $\left(\mathrm{CH}_{2}\right), 29.4\left(\mathrm{CH}_{2}\right), 29.2\left(\mathrm{CH}_{2}\right), 26.9\left(\mathrm{CH}_{3}\right), 26.5\left(\mathrm{CH}_{2}\right), 25.7$ $\left(\mathrm{CH}_{2}\right), 23.8\left(\mathrm{CH}_{2}\right), 22.5\left(\mathrm{CH}_{2}\right), 19.2$ (quat. C), $13.9\left(\mathrm{CH}_{3}\right)$; $\delta_{\mathrm{c}}(100 \mathrm{M} \mathrm{Hz})($ for 10) 208.0, 205.0, 204.3, 202.8, 199.9, 135.6 (CH), 134.2 (quat. C), 129.5 (CH), 127.6 (CH), 93.8 (CH), 83.1 $(\mathrm{CH}), 74.5(\mathrm{CH}), 65.0(\mathrm{CH}), 63.9\left(\mathrm{CH}_{2}\right), 53.4\left(\mathrm{CH}_{2}\right), 38.1$ $\left(\mathrm{CH}_{2}\right), 32.6\left(\mathrm{CH}_{2}\right), 31.4\left(\mathrm{CH}_{2}\right), 31.4\left(\mathrm{CH}_{2}\right), 29.4\left(\mathrm{CH}_{2}\right), 29.2$ $\left(\mathrm{CH}_{2}\right), 26.9\left(\mathrm{CH}_{3}\right), 26.5\left(\mathrm{CH}_{2}\right), 25.1\left(\mathrm{CH}_{2}\right), 23.8\left(\mathrm{CH}_{2}\right), 22.5$ (CH_{2}), 19.2 (quat. C), $13.9\left(\mathrm{CH}_{3}\right) ; \mathrm{m} / \mathrm{z}(\mathrm{FAB}) 703\left(\mathrm{M} \mathrm{H}^{+}, 18 \%\right)$, 646 (17, M H - But), 617 ($12, \mathrm{M}-\mathrm{Bu}^{t}-\mathrm{CO}$), 591 (100), 574 (37, M - 3CO-CO2), 533 (65), $519\left[16, \mathrm{MH}-\mathrm{Fe}(\mathrm{CO})_{3}-\right.$ CO_{2}], 395 ($10, \mathrm{M}-\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{FeO}_{5}$), 199 (67) [Found ($\mathrm{M} \mathrm{H}^{+}$) 703.2799. $\mathrm{C}_{38} \mathrm{H}_{51} \mathrm{FeO}_{7}$ Si requires $\mathrm{M} \mathrm{H}, 703.2753$].
[(10E,9S,12S,13R)-1-tert-B utyldiphenylsilyloxy-13-(carbonyloxy-кC)-9-hydroxy-(10,11,12- η)-octadec-10-en-12yl]tricarbonyliron 11 and [(10E ,9R,12R,13R)-1-tert-butyldiphenylsilyloxy-13-(carbonyloxy-кC)-9-hydroxy-(10,11,12- η)-octadec-10-en-12-yl]tricarbonyliron 12
Triisobutylaluminium ($3.14 \mathrm{~cm}^{3}$ of a $1 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ solution in toluene, 3.14 mmol) was added dropwise to a stirred solution of the ketones $\mathbf{4}$ and 10 ($957 \mathrm{mg}, 1.36 \mathrm{mmol} ; 4: 10 \sim 3: 1$) in benzene ($16.8 \mathrm{~cm}^{3}$) and toluene ($4.2 \mathrm{~cm}^{3}$) at $0^{\circ} \mathrm{C}$. A fter stirring at
this temperature for 35 min , aqueous ammonium chloride (3 cm^{3}) was added dropwise and the resultant solution was stirred for a further 10 min . The crude products were dried by the addition of $\mathrm{M} \mathrm{SSO}_{4}$ followed by vigorous stirring of the resultant suspension for a further 10 min whilst warming to room temperature. Filtration through a pad of Celite, washing the residue with ether ($100 \mathrm{~cm}^{3}$) followed by removal of the volatiles in vacuo provided the crude products as a solution in toluene. Immediate purification by flash column chromatography (eluent petrol-ether $3: 1$ to petrol-ether 2:1) provided a mixture of 11 and 12. Purification by preparative HPLC (D ynamax 41.4 mm column; eluent petrol-ether 3:1; flow rate $60 \mathrm{~cm}^{3} \mathrm{~min}^{-1}$; 150 mg injection in $1 \mathrm{~cm}^{3}$ dichloromethane) provided, in order of elution, the alcohol 11 as a yellow oil ($508 \mathrm{mg}, 53 \%$), $\mathrm{t}_{\mathrm{r}} 43.2$ $\mathrm{min} ; \quad[a]_{0}^{26}-76.7$ (c 1.70 in CHCl_{3}); $v_{\max }(\mathrm{film}) / \mathrm{cm}^{-1} 3424$ (OH), 3015, 2931, 2083 (CO), 2029 (CO), 2010 (CO), 1857, 1642 ($\mathrm{C}=0$) , 1464, 1428, 1389, 1361, 1216, 1111, 1029; $\delta_{\mathrm{H}}(500$ $\mathrm{M} \mathrm{Hz}) 0.88(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.5,18-\mathrm{H} \times 3), 1.05\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu} \mathrm{t}^{\mathrm{t}}\right.$, $1.23-1.84$ $(23 \mathrm{H}, \mathrm{m}, \mathrm{OH}, 2-\mathrm{H} \times 2,3-\mathrm{H} \times 2,4-\mathrm{H} \times 2,5-\mathrm{H} \times 2,6-\mathrm{H} \times 2,7-$ $\mathrm{H} \times 2,8-\mathrm{H} \times 2,14-\mathrm{H} \times 2,15-\mathrm{H} \times 2,16-\mathrm{H} \times 2,17-\mathrm{H} \times 2$), 3.65 ($2 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.5,1-\mathrm{H} \times 2$), $4.01(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 12.2,3.6,10-\mathrm{H}), 4.12$ (1 H, br s, 9-H), 4.24-4.28(1H, m, 13-H), 4.60 (1 H, dd, J 8.2, 4.6, 12-H), 4.80 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 12.2,8.2,11-\mathrm{H}$), 7.36-7.43 ($6 \mathrm{H}, \mathrm{m}, \mathrm{m}-$ Ph-H, p-Ph-H), 7.66 (4 H, dd, J 7.6, 1.6, o-Ph-H); $\delta_{\mathrm{c}}(50 \mathrm{M} \mathrm{Hz})$ 209.5, 206.6, 206.4, 203.3, 135.5, 134.0, 129.4, 127.5, 88.0, 77.2, $76.9,75.8,72.0,63.9,39.9,36.6,32.5,31.5,29.4,29.2,26.8$, 26.6, 25.9, 25.7, 22.5, 19.2, 13.9; m/z (FAB) 705 ($\mathrm{M} \mathrm{H}^{+}, 5 \%$), 676 ($6, ~ M-C O$), 647 ($16, ~ M-B u^{t}$), 575 ($54, ~ M-H-3$ $\left.\mathrm{CO}-\mathrm{CO}_{2}\right), 558$ (26), 517 (27), 199 (100) [Found ($\mathrm{M} \mathrm{H}^{+}$) 705.2887. $\mathrm{C}_{38} \mathrm{H}_{53} \mathrm{FeO}$ Si requires $\mathrm{M} \mathrm{H}, 705.2909$].

Then the alcohol 12 as a yellow oil ($172 \mathrm{mg}, 18 \%$), $\mathrm{t}_{\mathrm{r}} 57.2$ $\mathrm{min} ; \quad[a]_{\mathrm{D}}^{24}+44.6$ (c 0.70 in CHCl_{3}); $v_{\text {max }}($ film $) / \mathrm{cm}^{-1} 3416$ (OH), 3071, 3014, 2930, 2083 (CO), 2029 (CO), 2010 (CO), 1642 ($\mathrm{C}=0$) , 1464, 1428, 1390, 1216, 1111, 1008; $\delta_{\mathrm{H}}(400 \mathrm{M} \mathrm{Hz})$ $0.89(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.7,18-\mathrm{H} \times 3), 1.04\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\mathrm{t}}\right), 1.12-1.79(23 \mathrm{H}$ $\mathrm{m}, \mathrm{OH}, 2-\mathrm{H} \times 2,3-\mathrm{H} \times 2,4-\mathrm{H} \times 2,5-\mathrm{H} \times 2,6-\mathrm{H} \times 2,7-\mathrm{H} \times 2$, $8-\mathrm{H} \times 2,14-\mathrm{H} \times 2,15-\mathrm{H} \times 2,16-\mathrm{H} \times 2,17-\mathrm{H} \times 2), 3.65(2 \mathrm{H}, \mathrm{t}$, J 6.5, 1-H $\times 2$), $3.90(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 12.1,3.8,10-\mathrm{H}), 3.98(1 \mathrm{H}, \mathrm{t}, \mathrm{J}$ 6.6, 13-H), 4.07-4.13 ($1 \mathrm{H}, \mathrm{m}, 9-\mathrm{H}$), 4.44 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.0,12-\mathrm{H}$), 4.96 (1 H, dd, J 12.1, 8.0, 11-H), 7.36-7.43 ($6 \mathrm{H}, \mathrm{m}, \mathrm{m}-\mathrm{Ph}-\mathrm{H}$, p-Ph-H), 7.66 ($4 \mathrm{H}, \mathrm{dd}, \mathrm{J} 7.7,1.2, ~ o-\mathrm{Ph}-\mathrm{H}) ; \delta_{\mathrm{c}}(100 \mathrm{M} \mathrm{Hz})$ 209.8, 206.5, 205.7, 203.8, 135.6 (CH), 134.2 (quat. C), 129.5 (CH), 127.6 (CH), 89.6 (CH), 87.0 (CH), 74.9 (CH), 74.8 $(\mathrm{CH}), 71.9(\mathrm{CH}), 64.0\left(\mathrm{CH}_{2}\right), 39.8\left(\mathrm{CH}_{2}\right), 37.9\left(\mathrm{CH}_{2}\right), 32.6$ $\left(\mathrm{CH}_{2}\right), 31.5\left(\mathrm{CH}_{2}\right), 29.5\left(\mathrm{CH}_{2}\right), 29.4\left(\mathrm{CH}_{2}\right), 29.3\left(\mathrm{CH}_{2}\right), 26.9$ $\left(\mathrm{CH}_{3}\right), 25.9\left(\mathrm{CH}_{2}\right), 25.8\left(\mathrm{CH}_{2}\right), 25.3\left(\mathrm{CH}_{2}\right), 22.5\left(\mathrm{CH}_{2}\right), 19.3$ (quat. C), $14.0\left(\mathrm{CH}_{3}\right) ; \mathrm{m} / \mathrm{z}(\mathrm{FAB}) 705\left(\mathrm{M} \mathrm{H}^{+}, 17 \%\right), 648$ (15 , $\mathrm{MH}-\mathrm{Bu}^{\mathrm{t}}$), $620\left(6, \mathrm{MH}-\mathrm{Bu}^{\mathrm{t}}-\mathrm{CO}\right.$), 591 ($8, \mathrm{M}-\mathrm{Bu}^{\mathrm{t}}-$ 2CO), 575 ($100, \mathrm{M}-\mathrm{H}-3 \mathrm{CO}-\mathrm{CO}_{2}$), 558 (27), 517 (43), 199 (37) [Found ($\mathrm{M} \mathrm{H}^{+}$) 705.2884. $\mathrm{C}_{38} \mathrm{H}_{53} \mathrm{FeO}_{7} \mathrm{Si}$ requires M H, 705.2909].

The enantiopurity of 11 was determined by formation of the M osher ester using (S)-(+)- α-methoxy- α-(trifluoromethyl)phenylacetyl chloride: ${ }^{1} \mathrm{H}$ NMR spectroscopy indicated the presence of a single diastereoisomer; $\delta_{\mathrm{H}}(500 \mathrm{M} \mathrm{Hz}) 0.89(3 \mathrm{H}, \mathrm{t}$, J $6.7,18-\mathrm{H} \times 3), 1.05\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu} \mathrm{t}^{\mathrm{t}}\right), 1.18-1.68(22 \mathrm{H}, \mathrm{m}, 2-\mathrm{H} \times 2$, $3-\mathrm{H} \times 2,4-\mathrm{H} \times 2,5-\mathrm{H} \times 2,6-\mathrm{H} \times 2,7-\mathrm{H} \times 2,8-\mathrm{H} \times 2,14-$ $\mathrm{H} \times 2,15-\mathrm{H} \times 2,16-\mathrm{H} \times 2,17-\mathrm{H} \times 2$), $3.57(3 \mathrm{H}, \mathrm{s}, \mathrm{OM} \mathrm{e}), 3.65$ $(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.5,1-\mathrm{H} \times 2), 3.90(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 12.4,3.6,10-\mathrm{H}), 4.14$ ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 12.4,8.3,11-\mathrm{H}$), 4.15-4.20 ($1 \mathrm{H}, \mathrm{m}, 13-\mathrm{H}$), 4.38 (1 H, dd, J 8.3, 4.6, 12-H), 5.61 (1 H , ddd, J 10.5, 6.7, 3.6, 9-H), 7.35-7.42 (9 H, m, m-Ph-H, p-Ph-H, m-Ph'-H, p-Ph'-H), 7.54 (2 H, dd, J 7.7, 1.2, o-Ph'-H), 7.66 ($4 \mathrm{H}, \mathrm{dd}, \mathrm{J} 7.7,1.3$, o-Ph-H). For comparison, the ${ }^{1} \mathrm{H}$ NMR for the M osher ester prepared from (10E, 9S*,12S*,13R*)-11: $\delta_{\text {H }}(500 \mathrm{M} \mathrm{Hz}) 0.89$ (3 H, t, J 6.7, 18-H x 3), $1.05\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\mathrm{t}}\right), 1.18-1.68(22 \mathrm{H}, \mathrm{m}$, $2-\mathrm{H} \times 2, \quad 3-\mathrm{H} \times 2, \quad 4-\mathrm{H} \times 2, \quad 5-\mathrm{H} \times 2, \quad 6-\mathrm{H} \times 2, \quad 7-\mathrm{H} \times 2$, $8-\mathrm{H} \times 2,14-\mathrm{H} \times 2,15-\mathrm{H} \times 2,16-\mathrm{H} \times 2,17-\mathrm{H} \times 2), 3.57(3 \mathrm{H}, \mathrm{s}$, OM e), $3.65(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.5,1-\mathrm{H} \times 2), 3.90(0.5 \mathrm{H}, \mathrm{dd}, \mathrm{J} 12.4$, 3.6, 10-H), 3.97 ($0.5 \mathrm{H}, \mathrm{dd}, \mathrm{J} 11.7,3.6,10-\mathrm{H}^{\prime}$), 4.14 (1 H , dd,

J 12.4, 8.3, 11-H) , 4.15-4.20 ($1 \mathrm{H}, \mathrm{m}, 13-\mathrm{H}), 4.27(0.5 \mathrm{H}, \mathrm{dd}$, J 8.3, 4.6, 12-H), 4.38 ($0.5 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.3,4.6,12-\mathrm{H}^{\prime}$), 5.57 (0.5 H , ddd, J 10.5, 6.7, 3.6, 9-H), 5.61 (0.5 H , ddd, J 10.5 , 6.7, 3.6, 9-H'), 7.35-7.42 ($9 \mathrm{H}, \mathrm{m}, \mathrm{m}-\mathrm{Ph}-\mathrm{H}, \mathrm{p}-\mathrm{Ph}-\mathrm{H}, \mathrm{m}-\mathrm{Ph}^{\prime}-$ H, p-Ph'-H), 7.54 (2 H, dd, J 7.7, 1.2, o-Ph'-H), 7.66 (4 H , dd, J 7.7, 1.3, o-Ph-H).

[(10E, 9S, 12S, 13R)-9-A cetoxy-1-tert-butyIdiphenyIsilyloxy-13-(carbonyloxy-кC)-(10,11,12-п)-octadec-10-en-12-yl]tricarbonyliron 13 and [(10E ,9R ,12R,13R)-9-acetox y-1-tertbutyldiphenyIsilylox y-13-(carbonyloxy-кC)-(10,11,12- $\boldsymbol{\eta}$)-octadec-10-en-12-yl]tricarbonyliron 14

A cetic anhydride ($100 \mu \mathrm{l}, 1.00 \mathrm{mmol}$) was slowly added to a mixture of the alcohols 11 and 12 ($542 \mathrm{mg}, 0.77 \mathrm{mmol}, 11: 12$ $\sim 4: 1$), triethylamine ($142 \mu \mathrm{l}, 1.08 \mathrm{mmol}$) and 4-dimethylaminopyridine ($10 \mathrm{mg}, 0.08 \mathrm{mmol}$) in dichloromethane ($20 \mathrm{~cm}^{3}$) at $0^{\circ} \mathrm{C}$. A fter stirring at $0^{\circ} \mathrm{C}$ for 30 min , ether $\left(30 \mathrm{~cm}^{3}\right)$ was added and the solution was poured into aqueous sodium hydrogen carbonate ($40 \mathrm{~cm}^{3}$). A fter separating the layers, the organic phase was washed sequentially with aqueous sodium hydrogen carbonate solution ($1 \times 40 \mathrm{~cm}^{3}$), aqueous ammonium chloride $\left(2 \times 50 \mathrm{~cm}^{3}\right)$ and then water $\left(30 \mathrm{~cm}^{3}\right)$. The aqueous phase was extracted with ether $\left(2 \times 50 \mathrm{~cm}^{3}\right)$ and the combined organic extracts were washed with brine $\left(50 \mathrm{~cm}^{3}\right)$ and dried $\left(\mathrm{M} \mathrm{gSO}_{4}\right)$. Concentration in vacuo followed by flash column chromatography (eluent petrol-ether 4:1) of the residue provided, in order of elution, the acetate 13 as a yellow oil ($375 \mathrm{mg}, 65 \%$); $[a]_{0}^{24}-99.8$ (c 0.50 in CHCl_{3}); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3015,2931$, 2857, 2083 (CO), 2026 (CO), 1737 (C=0), 1667 (C=0), 1589, 1464, 1428, 1371, 1232, 1217, 1111, 1023, 823; $\delta_{\mathbf{H}}(200 \mathrm{MHz})$ $0.88(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.5,18-\mathrm{H} \times 3), 1.04\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu} \mathrm{u}^{\mathrm{t}}, 1.28-1.91(22 \mathrm{H}\right.$, $\mathrm{m}, 2-\mathrm{H} \times 2,3-\mathrm{H} \times 2,4-\mathrm{H} \times 2,5-\mathrm{H} \times 2,6-\mathrm{H} \times 2,7-\mathrm{H} \times 2,8-$ $\mathrm{H} \times 2,14-\mathrm{H} \times 2,15-\mathrm{H} \times 2,16 \mathrm{H} \times 2,17-\mathrm{H} \times 2), 2.08[3 \mathrm{H}, \mathrm{s}$, OC(O)M e], $3.65(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.3,1-\mathrm{H} \times 2), 3.93(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 11.5$, 5.7, 10-H), $4.25(1 \mathrm{H}, \mathrm{td}, \mathrm{J} 5.8,4.4,13-\mathrm{H}$), 4.57 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 11.5$, 8.3, 11-H), 4.66 (1 H, dd, J $8.3,4.4,12-H$), $5.22(1 \mathrm{H}, \mathrm{td}, \mathrm{J} 7.1$, 5.7, 9-H), 7.32-7.46 (6 H , m, m-Ph-H, p-Ph-H), 7.64-7.70 (4 H, $\mathrm{m}, \mathrm{o}-\mathrm{Ph}-\mathrm{H}) ; \mathrm{m} / \mathrm{z}(\mathrm{FAB}) 747\left(\mathrm{M} \mathrm{H}^{+}, 56 \%\right), 663(12, \mathrm{M} \mathrm{H}-3 \mathrm{CO})$, 647 (11, M H - But - MeCO), 634 (9, M H - But $-2 C 0$), 617 (43), 575 ($40, \mathrm{MH}-\mathrm{Bu}^{\mathrm{t}}-\mathrm{MeCO}-\mathrm{CO}-\mathrm{CO}_{2}$), 563 [12, $\left.\mathrm{MH}-\mathrm{Fe}(\mathrm{CO})_{3}-\mathrm{CO}_{2}\right], 517$ (28), 441 (14), 313 (22), 199 (100), 183 (29), 121 (46) [Found ($\mathrm{M} \mathrm{H}^{+}$) 747.3016. $\mathrm{C}_{40} \mathrm{H}_{55} \mathrm{FeO}_{8} \mathrm{Si}$ requires $\mathrm{M} \mathrm{H}, \mathrm{747.3015]}$.
Then the acetate 14 as a yellow oil ($92 \mathrm{mg}, 16 \%$) (Found C, $64.20 ; \mathrm{H}, 7.46 . \mathrm{C}_{40} \mathrm{H}_{54} \mathrm{FeO}_{8} \mathrm{Si}$ requires $\mathrm{C}, 64.33 ; \mathrm{H}, 7.29 \%$); $[a]_{D}^{24}+84.1$ (c 2.23 in CHCl_{3}); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3071,3014$, 2930, 2857, 2082 (CO), 2013 (CO), 1738 (C=0), 1661 ($\mathrm{C}=0$), 1589, 1513, 1464, 1428, 1372, 1343, 1327, 1303, 1230, 1111, 998; $\delta_{\mathrm{H}}(500 \mathrm{M} \mathrm{Hz}) 0.89(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.6,18-\mathrm{H} \times 3), 1.04(9 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{Bu}^{\mathrm{t}}\right), 1.14-1.87(22 \mathrm{H}, \mathrm{m}, 2-\mathrm{H} \times 2,3-\mathrm{H} \times 2,4-\mathrm{H} \times 2,5-\mathrm{H} \times 2$, $6-\mathrm{H} \times 2,7-\mathrm{H} \times 2,8-\mathrm{H} \times 2,14-\mathrm{H} \times 2,15-\mathrm{H} \times 2,16-\mathrm{H} \times 2$, $17-\mathrm{H} \times 2), 2.08[3 \mathrm{H}, \mathrm{s}, \mathrm{OC}(\mathrm{O}) \mathrm{M}$ e], $3.65(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.3,1-\mathrm{H} \times 2)$, 3.84 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 12.1,5.6,10-\mathrm{H}$), 3.99 ($1 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.2,13-\mathrm{H}$), 4.48 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.3,12-\mathrm{H}$), $4.75(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 12.1,7.3,11-\mathrm{H}), 5.22(1 \mathrm{H}$, td, 6.9, 5.6, 9-H), 7.36-7.46 (6 H, m, m-Ph-H , p-Ph-H), 7.66 (4 H, dd, J 7.3, 1.6, o-Ph-H); $\delta_{c}(100 \mathrm{MHz}$) 209.1, 206.3, 204.0, 203.3, 170.4, 135.6 (CH), 134.2 (quat. C), 129.5 (CH), 127.6 (CH), 90.8 (CH), 80.7 (CH), $76.0(\mathrm{CH}), 74.8(\mathrm{CH}), 74.4(\mathrm{CH})$, $64.0\left(\mathrm{CH}_{2}\right), 37.9\left(\mathrm{CH}_{2}\right), 36.9\left(\mathrm{CH}_{2}\right), 32.6\left(\mathrm{CH}_{2}\right), 31.4\left(\mathrm{CH}_{2}\right)$, $29.4\left(\mathrm{CH}_{2}\right), 29.3\left(\mathrm{CH}_{2}\right), 26.9\left(\mathrm{CH}_{3}\right), 25.8\left(\mathrm{CH}_{2}\right), 25.5\left(\mathrm{CH}_{2}\right), 25.2$ $\left(\mathrm{CH}_{2}\right), 22.5\left(\mathrm{CH}_{2}\right), 20.8\left(\mathrm{CH}_{3}\right), 19.6$ (quat. C), $19.3\left(\mathrm{CH}_{2}\right), 14.0$ $\left(\mathrm{CH}_{3}\right) ; \mathrm{m} / \mathrm{z}$ (FAB) $747\left(\mathrm{M} \mathrm{H}^{+}, 21 \%\right), 635$ (10), 617 (46), 575 (32, M - M eCO - 3CO - CO_{2}), 559 [14, $\mathrm{M}-\mathrm{OC}(\mathrm{O}) \mathrm{Me}-$ $3 \mathrm{CO}-\mathrm{CO}_{2}$], $503\left[12, \mathrm{M}-\mathrm{OC}(\mathrm{O}) \mathrm{Me}-\mathrm{Fe}(\mathrm{CO})_{3}-\mathrm{CO}_{2}\right], 121$ (55), 105 (72).

[(11Z ,9S,10R ,13S)-9-A cetoxy-1-tert-butyIdiphenyIsilyloxy($10,11,12,13-\eta$)-octadeca-10,12-diene]tricarbonyliron 15

Saturated aqueous barium hydroxide ($\sim 1 \mathrm{~cm}^{3}$) was added to the acetate 13 ($53 \mathrm{mg}, 0.08 \mathrm{mmol}$) in methanol ($1 \mathrm{~cm}^{3}$). A fter stir-
ring for 5 min, the solution was partitioned between water (20 cm^{3}) and ether ($20 \mathrm{~cm}^{3}$), and the aqueous phase was extracted with ether ($4 \times 20 \mathrm{~cm}^{3}$). The combined organic fractions were washed with brine ($20 \mathrm{~cm}^{3}$) and dried ($\mathrm{M} \mathrm{gSO}_{4}$). Concentration in vacuo followed by flash column chromatography (eluent petrol to petrol-ether 1:6 gradient) provided the diene complex 15 as a yellow oil ($7 \mathrm{mg}, 15 \%$); $[a]_{0}^{24}-74.3$ (c 1.02 in CHCl_{3}); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3018,2930,2857,2045$ (CO), 1976 (CO), 1731 (C=0), 1464, 1428, 1375, 1245, 1216; $\delta_{\mathrm{H}}(500 \mathrm{M} \mathrm{Hz}) 0.89$ (3 $\mathrm{H}, \mathrm{t}, \mathrm{J} 7.0,18-\mathrm{H} \times 3), 1.04\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu} \mathrm{u}^{\mathrm{t}}\right), 1.17-1.69(24 \mathrm{H}, \mathrm{m}, 2-$ $\mathrm{H} \times 2,3-\mathrm{H} \times 2,4-\mathrm{H} \times 2,5-\mathrm{H} \times 2,6-\mathrm{H} \times 2,7-\mathrm{H} \times 2,8-\mathrm{H} \times 2$, $10-\mathrm{H}, 13-\mathrm{H}, 14-\mathrm{H} \times 2,15-\mathrm{H} \times 2,16-\mathrm{H} \times 2,17-\mathrm{H} \times 2$), $2.08[3$ $\mathrm{H}, \mathrm{s}, \mathrm{OC}(\mathrm{O}) \mathrm{M}$ e], $3.64(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.5,1-\mathrm{H} \times 2)$, $4.75(1 \mathrm{H}$, apparent q, J 6.7, 9-H), 5.01 (1 H, dd, J 8.3, 5.2, 11-H or $12-\mathrm{H}$), 5.04 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.3,5.2,11-\mathrm{H}$ or $12-\mathrm{H}$), $7.36-7.43$ ($6 \mathrm{H}, \mathrm{m}, \mathrm{m}-\mathrm{Ph}-\mathrm{H}$, p-Ph-H), 7.66 (4 H , dd, J 7.6, 1.1, o-Ph-H); $\delta_{\mathrm{c}}(100 \mathrm{M} \mathrm{Hz}) 200.1$ (br), 170.1, 135.6 (CH), 134.2 (quat. C), $129.5(\mathrm{CH}$), 127.6 $(\mathrm{CH}), 84.0(\mathrm{CH}), 80.6(\mathrm{CH}), 75.5(\mathrm{CH}), 64.7(\mathrm{CH}), 64.0\left(\mathrm{CH}_{2}\right)$, $63.0(\mathrm{CH}), 37.5\left(\mathrm{CH}_{2}\right), 34.1\left(\mathrm{CH}_{2}\right), 32.6\left(\mathrm{CH}_{2}\right), 31.8\left(\mathrm{CH}_{2}\right), 31.4$ $\left(\mathrm{CH}_{2}\right), 29.4\left(\mathrm{CH}_{2}\right), 29.3\left(\mathrm{CH}_{2}\right), 27.5\left(\mathrm{CH}_{2}\right), 26.9\left(\mathrm{CH}_{3}\right), 25.7$ $\left(\mathrm{CH}_{2}\right), 25.4\left(\mathrm{CH}_{2}\right), 22.5\left(\mathrm{CH}_{2}\right), 21.0\left(\mathrm{CH}_{3}\right), 19.2$ (quat. C), 14.0 $\left(\mathrm{CH}_{3}\right) ; \mathrm{m} / \mathrm{z}(\mathrm{FAB}) 618\left([\mathrm{M}-3 \mathrm{CO}]^{+}, 100 \%\right), 575(8, \mathrm{M}-$ $3 \mathrm{CO}-\mathrm{MeCO}$), 517 ($9, \mathrm{M}-\mathrm{Bu}^{\mathrm{t}}-3 \mathrm{CO}-\mathrm{CO}_{2}$), 503 (12) \{Found ([M $-3 \mathrm{CO}]^{+}$) 618.3192. $\mathrm{C}_{36} \mathrm{H}_{54} \mathrm{FeO}_{3} \mathrm{Si}$ requires M - 3CO, 618.3191\}.

[(10E ,9S,12S,13R)-1-tert-B utyIdiphenyIsilyloxy-13-(carbonyl-oxy-кС)-9-hydroxy-(10,11,12- $\boldsymbol{\eta}$)-octadec-10-en-12-ylf tricarbonyliron 11

Potassium carbonate ($6 \mathrm{mg}, 0.045 \mathrm{mmol}$) was added to a solution of the acetate 13 ($8 \mathrm{mg}, 0.013 \mathrm{mmol}$) in methanol ($2.5 \mathrm{~cm}^{3}$) at $0^{\circ} \mathrm{C}$. A fter stirring at this temperature for 1 h , the solution was warmed to room temperature and stirring was continued for 2 h . The solution was poured into aqueous ammonium chloride ($20 \mathrm{~cm}^{3}$), dichloromethane ($10 \mathrm{~cm}^{3}$) was added and the layers were separated. The aqueous phase was extracted with dichloromethane ($2 \times 10 \mathrm{~cm}^{3}$), the combined organic phases were washed with brine $\left(20 \mathrm{~cm}^{3}\right)$ and dried ($\mathrm{M} \mathrm{SO}_{4}$). Concentration in vacuo followed by flash column chromatography (eluent petrol-ether $4: 1$ to $2: 1$) provided the alcohol 11 (4 mg , 53%), which was identical in every respect to that prepared earlier.

[(112,9S,10R, 13S)-1-tert-B utyldiphenyIsilyloxy-9-hydroxy($10,11,12,13-\eta$)-octadec-10,12-dieneltricarbonyliron 3

Saturated aqueous barium hydroxide ($\sim 1 \mathrm{~cm}^{3}$) was added to a stirred solution of the alcohol 11 ($457 \mathrm{mg}, 0.81 \mathrm{mmol}$) in methanol $\left(6 \mathrm{~cm}^{3}\right)$ until precipitation ceased to occur. A fter stirring for a further 5 min , ether $\left(20 \mathrm{~cm}^{3}\right)$ and water $\left(20 \mathrm{~cm}^{3}\right)$ were added. Following separation of the layers, the aqueous phase was extracted with ether ($3 \times 20 \mathrm{~cm}^{3}$) and the combined organic extracts were then washed with brine ($30 \mathrm{~cm}^{3}$) and dried $\left(\mathrm{M} \mathrm{gSO}_{4}\right)$. Concentration in vacuo followed by filtration through a pad of F Iorisil provided the crude product, which was purified by flash column chromatography (eluent petrol-ether 9:1) to afford the diene complex 3 as a bright yellow oil ($335 \mathrm{mg}, 78 \%$); $[a]_{0}^{24}+1.2$ (c 0.60 in CHCl_{3}); $v_{\text {max }}(\mathrm{film}) / \mathrm{cm}^{-1} 3418(\mathrm{OH})$, 3019, 2930, 2857, 2042 (CO), 1973 (CO), 1589, 1521, 1466, $1428,1216,1111,1008,929 ; \delta_{\mathrm{H}}(500 \mathrm{MHz}) 0.89(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.9$, $18-\mathrm{H} \times 3$), $1.04\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu} \mathrm{t}^{\mathrm{t}}, 1.07-1.71(25 \mathrm{H}, \mathrm{m}, \mathrm{OH}, 2-\mathrm{H} \times 2\right.$, $3-\mathrm{H} \times 2,4-\mathrm{H} \times 2,5-\mathrm{H} \times 2,6-\mathrm{H} \times 2,7-\mathrm{H} \times 2,8-\mathrm{H} \times 2,10-\mathrm{H}$, $13-\mathrm{H}, 14-\mathrm{H} \times 2,15-\mathrm{H} \times 2,16-\mathrm{H} \times 2,17-\mathrm{H} \times 2), 3.41-3.48(1 \mathrm{H}$, $\mathrm{m}, 9-\mathrm{H}), 3.65(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.5,1-\mathrm{H} \times 2), 5.04(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.8,5.0$, $11-\mathrm{H}$ or $12-\mathrm{H}$), 5.14 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.8,5.0,11-\mathrm{H}$ or $12-\mathrm{H}$), $7.35-$ 7.46 ($6 \mathrm{H}, \mathrm{m}, \mathrm{m}-\mathrm{Ph}-\mathrm{H}, \mathrm{p}-\mathrm{Ph}-\mathrm{H}$), 7.66 ($4 \mathrm{H}, \mathrm{dd}, \mathrm{J} 7.7,1.3, ~ o-\mathrm{Ph}-$ H); $\delta_{\mathrm{c}}(100 \mathrm{M} \mathrm{Hz}) 210.1$ (br, CO), 135.6 (CH), 134.2 (quat. C), 129.5 (CH), 127.6 (CH), 84.3 (CH), 81.0 (CH), 74.1 (CH), 68.9 $(\mathrm{CH}), 65.2(\mathrm{CH}), 64.0\left(\mathrm{CH}_{2}\right), 39.9\left(\mathrm{CH}_{2}\right), 34.1\left(\mathrm{CH}_{2}\right), 32.6$ $\left(\mathrm{CH}_{2}\right), 31.8\left(\mathrm{CH}_{2}\right), 31.4\left(\mathrm{CH}_{2}\right), 29.5\left(\mathrm{CH}_{2} \times 2\right), 29.3\left(\mathrm{CH}_{2}\right), 26.9$ $\left(\mathrm{CH}_{3}\right) 25.9\left(\mathrm{CH}_{2}\right), 25.8\left(\mathrm{CH}_{2}\right) 22.5\left(\mathrm{CH}_{2}\right), 19.2$ (quat. C), 14.0
$\left(\mathrm{CH}_{3}\right) ; \mathrm{m} / \mathrm{z}(\mathrm{FAB}) 643\left([\mathrm{M}-\mathrm{OH}]^{+}, 7 \%\right), 618$ (52), 559 (100 M - 3CO - OH), 313 (48), 193 (77), 183 (44), 121 (41) \{Found ($[\mathrm{M}-3 \mathrm{CO}-\mathrm{OH}]^{+}$) 559.3091. $\mathrm{C}_{34} \mathrm{H}_{51} \mathrm{FeOSi}$ requires $\mathrm{M}-$ 3CO-OH,559.3056\}.

Stock solution of HF-pyridine in pyridine-tetrahydrofuran

Pyridine hydrofluoride (ex fluka; $11.4 \mathrm{~cm}^{3}$) was added to a stirred solution of pyridine ($42 \mathrm{~cm}^{3}$) in tetrahydrofuran (120 cm^{3}) in a $250 \mathrm{~cm}^{3}$ poly(vinyl chloride) bottle under argon. The resulting colourless solution was stored under argon at $-20^{\circ} \mathrm{C}$ and was used as the stock solution in all the following deprotections.

[(112 ,9S ,10R ,13S)-1,9-D ihydrox y-(10,11,12,13- η)-octadeca-10,12-diene]tricarbonyliron 16

HF - pyridine stock solution ($122 \mathrm{~cm}^{3}$) was added dropwise to a stirred solution of the diene complex 3 ($473 \mathrm{mg}, 0.72 \mathrm{mmol}$) in tetrahydrofuran ($28 \mathrm{~cm}^{3}$). Stirring was continued for 18 h , after which hexane ($200 \mathrm{~cm}^{3}$) was added and stirring was continued for a further 10 min . The solution was slowly poured into aqueous sodium hydrogen carbonate ($400 \mathrm{~cm}^{3}$) at $0^{\circ} \mathrm{C}$ and the biphasic mixture was vigorously stirred for 20 min . The layers were separated and the organic phase was washed with aqueous sodium hydrogen carbonate until effervescence ceased. The aqueous phase was then extracted with ether ($3 \times 100 \mathrm{~cm}^{3}$) and the combined organic extracts were washed with brine (200 cm^{3}) and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Concentration in vacuo was followed by azeotropic removal of pyridine using toluene ($2 \times 100 \mathrm{~cm}^{3}$). Flash column chromatography of the residue (eluent petrolether 5:1 to petrol-ether 1:3) afforded the diol 16 as a green oil ($279 \mathrm{mg}, 92 \%$) (Found $\mathrm{C}, 59.67 ; \mathrm{H}, 7.93 . \mathrm{C}_{21} \mathrm{H}_{34} \mathrm{FeO}_{5}$ requires C, $59.69 ; \mathrm{H}, 8.12 \%$); $[a]_{D}^{22}-14.7$ (c $\left.0.70, \mathrm{CHCl}_{3}\right) ; v_{\text {max }}($ film)/ $\mathrm{cm}^{-1} 3385$ (OH), 3010, 2929, 2850, 2039 (CO), 1966 (CO), 1664, 1466, 1379, 1216, 1127, 1054, 880; $\delta_{\mathrm{H}}(500 \mathrm{M} \mathrm{Hz}) 0.89(3 \mathrm{H}, \mathrm{t}, \mathrm{J}$ 7.0, $18-\mathrm{H} \times 3$), $1.03(1 \mathrm{H}$, apparent $\mathrm{t}, \mathrm{J} 8.8,10-\mathrm{H}), 1.06-1.12$ (1 $\mathrm{H}, \mathrm{m}, 13-\mathrm{H}), 1.23-1.57(24 \mathrm{H}, \mathrm{m}, \mathrm{OH} \times 2,2-\mathrm{H} \times 2,3-\mathrm{H} \times 2$, $4-\mathrm{H} \times 2,5-\mathrm{H} \times 2,6-\mathrm{H} \times 2,7-\mathrm{H} \times 2,8-\mathrm{H} \times 2,14-\mathrm{H} \times 2,15-$ $\mathrm{H} \times 2,16-\mathrm{H} \times 2,17-\mathrm{H} \times 2), 3.41-3.47(1 \mathrm{H}, \mathrm{m}, 9-\mathrm{H}), 3.63(2 \mathrm{H}$, br t, J $6.7,1-\mathrm{H} \times 2$), $5.05(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.8,5.0,11-\mathrm{H}$ or $12-\mathrm{H}$), 5.14 (1 H , dd, J $8.8,5.0,11-\mathrm{H}$ or $12-\mathrm{H}$); $\delta_{\mathrm{c}}(50 \mathrm{M} \mathrm{Hz}) 212.1$ (br), 84.2, 80.9, 73.9, 66.8, 65.1, 62.9, 39.8, 34.1, 32.7, 31.7, 31.4, 29.4 (2 signals), 29.3, 25.8, 25.6, 22.4, 13.9; m/z (CI) 405 ($[\mathrm{M}-\mathrm{OH}]^{+}, 5 \%$), 338 (17, M - 3CO), 284 (100), 282 [42, $\left.\mathrm{M}-\mathrm{Fe}(\mathrm{CO})_{3}\right], 265\left[73, \mathrm{M}-\mathrm{Fe}(\mathrm{CO})_{3}-\mathrm{OH}\right], 249[12, \mathrm{MH}-$ $\mathrm{Fe}(\mathrm{CO})_{3}-2 \mathrm{OH}$] \{Found ($[\mathrm{M}-\mathrm{OH}]^{+}$) 405.1728. $\mathrm{C}_{21} \mathrm{H}_{33} \mathrm{FeO}_{4}$ requires $\mathrm{M}-\mathrm{OH}, 405.1728\}$.

Preparation of sodium hydroxide-hydrogen peroxide solution

Hydrogen peroxide ($9 \mathrm{~cm}^{3}$ of a 30% aqueous solution) was added to a stirred solution of sodium hydroxide ($450 \mathrm{mg}, 11$ mmol) in methanol ($15 \mathrm{~cm}^{3}$) at $0^{\circ} \mathrm{C}$. The solution was used immediately.

(10E ,12E ,9S)-1,9-D ihydroxyoctadeca-10,12-diene 17

A solution of the diol 16 ($279 \mathrm{mg}, 0.65 \mathrm{mmol}$) in methanol (9 cm^{3}) at $0^{\circ} \mathrm{C}$ was treated with sodium hydroxide-hydrogen peroxide solution (vide infra) ($11.1 \mathrm{~cm}^{3}$). A fter stirring at $0^{\circ} \mathrm{C}$ for 25 min , water $\left(30 \mathrm{~cm}^{3}\right)$ and ether $\left(30 \mathrm{~cm}^{3}\right)$ were added and the layers were separated. The aqueous phase was extracted with ether ($3 \times 30 \mathrm{~cm}^{3}$) and the combined organic extracts were washed sequentially with aqueous ammonium chloride ($30 \mathrm{~cm}^{3}$) and brine $\left(50 \mathrm{~cm}^{3}\right)$ and then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Concentration in vacuo followed by flash column chromatography (eluent petrolether $2: 3$) afforded the diene 17 as a colourless solid (173 mg , 94\%), mp $43-45^{\circ} \mathrm{C}$ (Found C, 76.31; H, 12.00. $\mathrm{C}_{18} \mathrm{H}_{34} \mathrm{O}_{2}$ requires $\mathrm{C}, 76.53 ; \mathrm{H}, 12.14 \%$); $[a]_{0}^{24}+4.4\left(\mathrm{C} 0.55\right.$ in $\left.\mathrm{CHCl}_{3}\right)$; $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3400(\mathrm{OH}), 3016,2929,2856,1659,1457$, $1379,1216,1053,990 ; \delta_{\mathrm{H}}(500 \mathrm{M} \mathrm{Hz}) 0.89(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.8,18-$ $\mathrm{H} \times 3), 1.26-1.57(22 \mathrm{H}, \mathrm{m}, \mathrm{OH} \times 2,2-\mathrm{H} \times 2,3-\mathrm{H} \times 2,4-\mathrm{H} \times 2$, $5-\mathrm{H} \times 2,6-\mathrm{H} \times 2,7-\mathrm{H} \times 2,8-\mathrm{H} \times 2,15-\mathrm{H} \times 2,16-\mathrm{H} \times 2,17-$
$\mathrm{H} \times 2), 2.07(2 \mathrm{H}$, apparent $\mathrm{q}, \mathrm{J} 7.2,14-\mathrm{H} \times 2), 3.63(2 \mathrm{H}, \mathrm{t}, \mathrm{J}$ $6.6,1-\mathrm{H} \times 2$), $4.10(1 \mathrm{H}$, apparent q, J $6.8,9-\mathrm{H}), 5.56(1 \mathrm{H}, \mathrm{dd}$, J $15.2,6.8,10-\mathrm{H}), 5.70(1 \mathrm{H}, \mathrm{dt}, \mathrm{J} 15.1,7.2,13-\mathrm{H}), 6.01(1 \mathrm{H}, \mathrm{dd}$, J 15.1, 10.5, 12-H), 6.16 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 15.2,10.5,11-\mathrm{H}$); $\delta_{\mathrm{c}}(100$ $\mathrm{M} \mathrm{Hz}) 135.7(\mathrm{CH}), 133.6(\mathrm{CH}), 131.0(\mathrm{CH}), 129.4(\mathrm{CH}), 72.9$ $(\mathrm{CH}), 63.1\left(\mathrm{CH}_{2}\right), 37.3\left(\mathrm{CH}_{2}\right), 32.8\left(\mathrm{CH}_{2}\right), 32.6\left(\mathrm{CH}_{2}\right), 31.4$ $\left(\mathrm{CH}_{2}\right), 29.5\left(\mathrm{CH}_{2}\right), 29.4\left(\mathrm{CH}_{2}\right), 29.3\left(\mathrm{CH}_{2}\right), 28.9\left(\mathrm{CH}_{2}\right), 25.7$ $\left(\mathrm{CH}_{2}\right), 25.4\left(\mathrm{CH}_{2}\right), 22.5\left(\mathrm{CH}_{2}\right), 14.0\left(\mathrm{CH}_{3}\right) ; \mathrm{m} / \mathrm{z}(\mathrm{Cl}) 300$ $\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 5 \%\right), 282(17, \mathrm{M}), 265(100, \mathrm{M}-\mathrm{OH})$ \{Found $\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}\right)$300.2903. $\mathrm{C}_{18} \mathrm{H}_{38} \mathrm{NO}_{2}$ requires $\mathrm{M}+\mathrm{NH}_{4}$ $300.2902\}$.

(10E ,12E ,9S)-1-tert-B utyIdiphenyIsilylox y-9-hydrox yoctadeca-10,12-diene 20

Portions ($1.5 \mathrm{~cm}^{3}$) of sodium hydroxide-hydrogen peroxide solution (vide infra for preparation) were added each hour for 4 h to a stirred solution of $\mathbf{3}(50 \mathrm{mg}, 0.075 \mathrm{mmol})$ in methanol $\left(0.7 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$. A fter stirring for 6 h at this temperature, ether ($10 \mathrm{~cm}^{3}$) was added and the mixture was poured into aqueous ammonium chloride ($20 \mathrm{~cm}^{3}$). A fter separating the layers, the aqueous phase was extracted with ether ($3 \times 10 \mathrm{~cm}^{3}$) and the combined organic extracts were then washed with brine $\left(20 \mathrm{~cm}^{3}\right)$ and dried $\left(\mathrm{M} \mathrm{gSO}_{4}\right)$. Concentration in vacuo followed by flash column chromatography (eluent petrol-ether 8:1 to petrol-ether $5: 1$) afforded the diene 20 as a colourless oil ($18 \mathrm{mg}, 46 \%$); $[a]_{0}^{23}+5.2$ (c 1.20 in CHCl_{3}); $v_{\max }\left(\mathrm{CHCl}_{3}\right) /$ $\mathrm{cm}^{-1} 3400$ (OH), 2929, 2856, 1659, 1589, 1464, 1427, 1389, $1216,1111,986 ; \delta_{\mathrm{H}}(500 \mathrm{MHz}) 0.89(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.7,18-\mathrm{H} \times 3$), $1.04\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\mathrm{t}}\right), 1.17-1.67(20 \mathrm{H}, \mathrm{m}, 2-\mathrm{H} \times 2,3-\mathrm{H} \times 2$, $4-\mathrm{H} \times 2,5-\mathrm{H} \times 2,6-\mathrm{H} \times 2,7-\mathrm{H} \times 2,8-\mathrm{H} \times 2,15-\mathrm{H} \times 2,16-$ $\mathrm{H} \times 2,17-\mathrm{H} \times 2), 2.07(2 \mathrm{H}$, apparent $\mathrm{q}, \mathrm{J} 7.1,14-\mathrm{H} \times 2), 3.65$ $(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.5,1-\mathrm{H} \times 2), 4.10(1 \mathrm{H}$, apparent q, J $6.5,9-\mathrm{H}), 5.57$ ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 15.2,6.5,10-\mathrm{H}$), 5.70 ($1 \mathrm{H}, \mathrm{dt}, \mathrm{J} 15.1,7.1,13-\mathrm{H}$), 6.02 ($1 \mathrm{H}, \mathrm{dd}$, J 15.1, 10.4, 12-H), 6.16 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 15.2,10.4$, 11-H), 7.36-7.43 (6 H, m, m-Ph-H, p-Ph-H), 7.66 (4 H, dd, J $6.6,1.8,0-\mathrm{Ph}-\mathrm{H}) ; \delta_{\mathrm{c}}(100 \mathrm{M} \mathrm{Hz}) 135.6(\mathrm{CH} \times 2), 134.2$ (quat. C), 133.6 (CH), $131.0(\mathrm{CH}), 129.5(\mathrm{CH}), 129.4(\mathrm{CH}), 127.6$ $(\mathrm{CH}), 72.9(\mathrm{CH}), 64.0\left(\mathrm{CH}_{2}\right), 37.4\left(\mathrm{CH}_{2}\right), 32.7\left(\mathrm{CH}_{2}\right), 32.6$ $\left(\mathrm{CH}_{2}\right)$, $31.4\left(\mathrm{CH}_{2}\right), 29.7\left(\mathrm{CH}_{2}\right), 29.5\left(\mathrm{CH}_{2}\right), 29.3\left(\mathrm{CH}_{2}\right), 28.9$ $\left(\mathrm{CH}_{2}\right), 26.9\left(\mathrm{CH}_{3}\right), 25.8\left(\mathrm{CH}_{2}\right), 25.5\left(\mathrm{CH}_{2}\right), 22.5\left(\mathrm{CH}_{2}\right), 19.2$ (quat. C), $14.1\left(\mathrm{CH}_{3}\right) ; \mathrm{m} / \mathrm{z}(\mathrm{Cl}) 538\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 5 \%\right), 520(27$, M), 503 (100, M - OH), 463 ($10, \mathrm{M}-\mathrm{Bu}^{\mathrm{t}}$), 385 (10), 256 (12), 247 (22) \{Found ($\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}$) 538.4080. $\mathrm{C}_{34} \mathrm{H}_{56} \mathrm{NO}_{2} \mathrm{Si}$ requires $\left.\mathrm{M}+\mathrm{NH}_{4}, 538.4080\right\}$.

($10 \mathrm{E}, 12 \mathrm{E}, 9 \mathrm{~S}$)-9-H ydroxyoctadeca-10,12-dienal 18

A solution of the diol 17 ($58 \mathrm{mg}, 0.21 \mathrm{mmol}$) in benzene ($2 \mathrm{~cm}^{3}$) was added via a cannula to a stirred solution of tris(triphenylphosphine)ruthenium dichloride ($199 \mathrm{mg}, 0.20 \mathrm{mmol}$) in benzene $\left(2 \mathrm{~cm}^{3}\right)$. A fter stirring at room temperature for 22 h , the mixture was filtered through a pad of Florisil and the residue was washed with ether ($200 \mathrm{~cm}^{3}$). Concentration in vacuo afforded the crude product which was purified by flash column chromatography (eluent petrol-ether $5: 2$, column preequilibrated with petrol-ether 5:2 containing 1\% triethylamine) to yield the aldehyde 18 as a colourless oil ($42 \mathrm{mg}, 73 \%$) $[a]_{0}^{24}-2.6$ (c 1.05 in CHCl_{3}); $v_{\max }\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1} 3420(\mathrm{OH})$, 3016, 2929, 2856, 1721 ($\mathrm{C}=0$), 1658, 1591, 1466, 1435, 1390 1216, 1096; $\delta_{\mathrm{H}}(500 \mathrm{M} \mathrm{Hz}) 0.89(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.7,18-\mathrm{H} \times 3), 1.23-$ $1.66(19 \mathrm{H}, \mathrm{m}, \mathrm{OH}, 3-\mathrm{H} \times 2,4-\mathrm{H} \times 2,5-\mathrm{H} \times 2$, $6-\mathrm{H} \times 2$, $7-\mathrm{H} \times 2,8-\mathrm{H} \times 2,15-\mathrm{H} \times 2,16-\mathrm{H} \times 2,17-\mathrm{H} \times 2), 2.07(2 \mathrm{H}$, apparent q, J $7.0,14-\mathrm{H} \times 2), 2.41(2 \mathrm{H}, \mathrm{td}, \mathrm{J} 6.9,1.6,2-\mathrm{H} \times 2)$, $4.10(1 \mathrm{H}$, apparent q, J $7.0,9-\mathrm{H}), 5.57(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 15.2,7.0$, $10-\mathrm{H}$), 5.70 ($1 \mathrm{H}, \mathrm{dt}$, J 15.2, 7.0, 13-H), 6.02 ($1 \mathrm{H}, \mathrm{dd}$, J 15.2, 10.5, 12-H), 6.17 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 15.2,10.5,11-\mathrm{H}$), 9.76 ($1 \mathrm{H}, \mathrm{t}, \mathrm{J}$ $1.6,1-\mathrm{H}) ; \delta_{\mathrm{c}}(50 \mathrm{M} \mathrm{Hz}) 202.8,135.5,133.4,130.8,129.2,72.6$, 43.7, 37.1, 32.4, 31.2, 29.2, 29.1, 28.9, 28.7, 25.2, 22.3, 21.8 13.9; m/z (EI) 280 (M ${ }^{+}, 12 \%$), 279 ($10, \mathrm{M}-\mathrm{H}$), 263 (100 $\mathrm{M}-\mathrm{OH}$) [Found (M^{+}) 280.2402. $\mathrm{C}_{18} \mathrm{H}_{32} \mathrm{O}_{2}$ requires M 280.2402]
(10E ,12E ,9S)-M ethyl 9-hydroxyoctadeca-10,12-dienoate 19
Potassium dihydrogen phosphate ($144 \mathrm{mg}, 1.08 \mathrm{mmol}$) and sodium hypochlorite ($36 \mathrm{mg}, 0.40 \mathrm{mmol}$) were sequentially added to a stirred solution of the aldehyde $18(13 \mathrm{mg}, 0.046$ mmol) in tert-butyl alcohol ($0.6 \mathrm{~cm}^{3}$) and water ($0.6 \mathrm{~cm}^{3}$) containing 2-methylbut-2-ene ($172 \mu \mathrm{l}, 2.08 \mathrm{mmol}$). A fter further stirring for 1 h , the solution was cooled to $0^{\circ} \mathrm{C}$, aqueous sodium sulfite $\left(\sim 3 \mathrm{~cm}^{3}\right)$ was added dropwise and stirring was continued at $0^{\circ} \mathrm{C}$ for 30 min . The solution was then poured into aqueous ammonium chloride ($20 \mathrm{~cm}^{3}$) and extracted with ether (3×15 cm^{3}) and brine ($20 \mathrm{~cm}^{3}$) and then dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. The solution was concentrated in vacuo to a small volume ($\sim 3 \mathrm{~cm}^{3}$) and diazomethane, prepared according to the literature procedure, ${ }^{27}$ was added with stirring until decolourisation ceased to occur. A rgon was bubbled through the solution for 10 min after which concentration in vacuo afforded the crude product. Flash column chromatography (eluent petrol-ether $4: 1$) provided the ester 19 as a pale yellow oil ($7 \mathrm{mg}, 49 \%$); $[a]_{D}^{24}+6.0$ (c 0.40 in CHCl_{3}), $\left\{\right.$ lit., ${ }^{25}[a]_{\mathrm{D}}+5.2$ (c 5.00 in $\left.\mathrm{CHCl}_{3}\right\}$; $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) / \mathrm{cm}^{-1}$ 3435 (OH), 3018, 2928, 2856, 1731 ($\mathrm{C}=0$), 1464, 1437, 1377, 1216, 1175, 1112, 990; $\delta_{\mathrm{H}}(500 \mathrm{MHz}) 0.89(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.7,18-$ $\mathrm{H} \times 3), 1.23-1.64(19 \mathrm{H}, \mathrm{m}, \mathrm{OH}, 3-\mathrm{H} \times 2,4-\mathrm{H} \times 2,5-\mathrm{H} \times 2$, $6-\mathrm{H} \times 2,7-\mathrm{H} \times 2,8-\mathrm{H} \times 2,15-\mathrm{H} \times 2,16-\mathrm{H} \times 2,17-\mathrm{H} \times 2$), 2.07 (2 H , apparent q, J 6.9, 14-H $\times 2$), $2.30(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.5,2-\mathrm{H} \times 2$), $3.66\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{M} \mathrm{e}\right), 4.10(1 \mathrm{H}$, apparent q, J 7.0, 9-H), 5.57 (1 H, dd, J $15.2,7.0,10-\mathrm{H}$), 5.70 ($1 \mathrm{H}, \mathrm{dt}$, J 15.2, 6.9, 13-H), 6.01 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 15.2,10.4,12-\mathrm{H}$), 6.16 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 15.2,10.4,11-\mathrm{H}$); $\delta_{\mathrm{c}}(50 \mathrm{M} \mathrm{Hz}) 174.3,135.6,133.5,131.0,129.4,72.8,51.4,37.2$, 34.1, 32.6, 31.4, 29.7, 29.3, 29.1, 28.9, 25.3, 24.9, 22.5, 14.0; m/z (CI) 328 ($\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}, 4 \%$), $310(25, \mathrm{M}), 293(100, \mathrm{M}-\mathrm{OH})$ \{Found $\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}\right.$) 328.2852. $\mathrm{C}_{19} \mathrm{H}_{38} \mathrm{NO}_{3}$ requires $\mathrm{M}+$ $\left.\mathrm{NH}_{4}, 328.2852\right\}$.

(10E ,12E ,9S)-9-H ydroxyoctadeca-10,12-dienoic acid (β-dimorphecolic acid) 1

Lithium hydroxide ($12 \mathrm{mg}, 0.29 \mathrm{mmol}$) was added in one portion to a stirred solution of the ester $19(16 \mathrm{mg}, 0.052 \mathrm{mmol})$ in dimethoxyethane ($2.4 \mathrm{~cm}^{3}$) and water ($0.8 \mathrm{~cm}^{3}$) at $0^{\circ} \mathrm{C}$. A fter stirring at this temperaturefor 30 min , the solution was warmed to room temperature and stirred for a further 3 h , after which the mixture was poured into aqueous sodium hydroxide ($5 \mathrm{~cm}^{3}$ of a $0.3 \mathrm{~mol} \mathrm{dm}{ }^{-3}$ solution). The aqueous phase was washed with ether ($3 \times 15 \mathrm{~cm}^{3}$) and was then acidified to pH 1 with 0.3 $\mathrm{mol} \mathrm{dm}^{-3} \mathrm{HCl}$. The aqueous phase was extracted with ether ($3 \times 15 \mathrm{~cm}^{3}$) and the combined organic extracts were washed with brine ($30 \mathrm{~cm}^{3}$) and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Concentration in vacuo provided the crude product as a cream-coloured solid which was then triturated with acetone to provide the acid $1(13 \mathrm{mg}$, 85%), mp $38-40^{\circ} \mathrm{C}$ (lit., ${ }^{25} 39-40^{\circ} \mathrm{C}$); $[a]_{\mathrm{b}}^{24}+15.4$ (c 1.0 in MeOH) [lit., ${ }^{25}[a]_{0}^{24}+15.2$ (c 5.0 in M eOH$] ; v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1}$ 3422 (OH), 2925, 2870, 1712-1458 ($\mathrm{C}=0, \mathrm{C}=\mathrm{C}$), 1321, 1211, 986; $\delta_{\mathrm{H}}\left(500 \mathrm{M} \mathrm{Hz}, \mathrm{CD}_{3}\right.$ OD $) 0.89(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 6.8,18-\mathrm{H} \times 3$), $1.23-$ $1.61(18 \mathrm{H}, \mathrm{m}, 3-\mathrm{H} \times 2,4-\mathrm{H} \times 2,5-\mathrm{H} \times 2,6-\mathrm{H} \times 2,7-\mathrm{H} \times 2$, $8-\mathrm{H} \times 2,15-\mathrm{H} \times 2,16-\mathrm{H} \times 2,17-\mathrm{H} \times 2), 2.06(2 \mathrm{H}$, apparent q , J $7.1,14-\mathrm{H} \times 2), 2.21(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 7.5,1-\mathrm{H} \times 2), 4.00(1 \mathrm{H}$, apparent q, J 6.6, 9-H), $5.51(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 15.1,6.6,10-\mathrm{H}), 5.66(1 \mathrm{H}$, dt, J 15.1, 7.1, 13-H), 6.02 (1 H, dd, J 15.1, 10.5, 12-H), 6.14 (1 H, dd, J 15.1, 10.5, 11-H); m/z (FAB) 279 ([M - OH] ${ }^{+}, 100 \%$), 319 (80), 160 (26), 109 (38) \{Found ($[\mathrm{M}-\mathrm{OH}]^{+}$) 279.2319. $\mathrm{C}_{18} \mathrm{H}_{31} \mathrm{O}_{2}$ requires $\left.\mathrm{M}-\mathrm{OH}, 279.2324\right\}$.

Acknowledgements

We are grateful to the EPSRC (Research Studentship to G. M.), Pfizer Central Research and the BP 1702 endowment (to S. V. L.) for generously funding this work.

R eferences

1 C. R. Smith, Jr., T. L. Wilson, E. H. M elvin and I. A. Wollf, J. Am. Chem. Soc., 1960, 82, 1747

2 J. M. D uffault, J. Einhorn and A. A lexakis, Tetrahedron Lett., 1995 36, 2765 and references therein.
3 J. M ann, in Secondary M etabolism, Clarendon Press, Oxford, 1987.
4 J ap P 62-164620 (C hem. A bstr., 1988, 108, 26 976).
5 R. K raus, G. Spiteller and W. Bartsch, Liebigs A nn. Chem., 1991, 335.

6 G. A. Blondin, A nn. N. Y. A cad. Sci., 1975, 264, 98.
7 P. S. A isen, K. A. H aines, W. Given, S. B. A bramson, M. Pras, C. Serhan, M . Hamberg, B. Samuelsson and G. Weissmann, Proc N atl. A cad. Sci. USA, 1985, 82, 1232.
8 S. V. Ley and G. M eek, J. Chem. Soc., Chem. Commun., 1995, 1751.
9 For overviews of the chemistry of π-allyltricarbonyliron lactone complexes see: S. V. Ley, L. R . C ox and G. M eek, C hem. R ev., 1996, 96, 423; S. V. Ley, P ure A ppl. Chem., 1994, 66, 1415.
10 S. V. Ley, G. M eek, K.-H. M etten and C. Pique, J. Chem. Soc., C hem. C ommun., 1994, 1931.
11 S. V. Ley and G. M eek, unpublished work.
12 R. G rée, Synthesis, 1989, 341 and references therein.
13 R. A. Johnson and K. B. Sharpless, in Comprehensive Organic Synthesis, eds. B. M. Trost and I. F leming, Pergamon Press, Oxford, 1991, vol. 7, p. 389.
14 Y. Gao, R. M. H anson, J. M. K lunder, S. Y. K o, S. M asamune and K . B. Sharpless, J. A m. Chem. Soc., 1987, 109, 5765.
15 J. A. D ale and H. S. M osher, J. A m. C hem. Soc., 1973, 95, 512.
16 R . R atcliffe and R . Rodehorst, J. Org. C hem., 1970, 35, 4000.
17 P. A. G rieco and C. S. Pognowski, J. A m. C hem. Soc., 1973, 95, 3071.
18 M. A. Blanchette, W. Choy, J. T. Davies, A. P. Essenfeld, S. M asamune, W. R. Roush and T. Sakai, Tetrahedron Lett., 1984, 25, 2183.

19 A. M . H orton, D. M . Hollinshead and S. V. Ley, Tetrahedron, 1984, 40, 1737.
20 R. A umann, H. R ing, C. K ruger and R. G oddard, C hem. Ber., 1979, 112, 3644.
21 M. Franck-N eumann, M. P. Heitz and D. M artina, Tetrahedron Lett., 1983, 24, 1615; M. Franck-Neumann, P. Chemla and D. M artina, Synlett, 1990, 641.

22 J. Fried and J. C. Sih, Tetrahedron Lett., 1973, 3899; J. Fried and C. H. Lin, J. M ed. Chem., 1973, 16, 429.

23 H. Tomioka, K. Takai, K. Oshima and H. N ozaki, Tetrahedron L ett., 1981, 22, 1605.
24 B. S. Bal, W. E. Childers, Jr. and H. W. Pinnick, Tetrahedron, 1981, 37, 2091.
25 Compound registration no. H-02540, in Dictionary of Natural Products, ed. J. Buckingham, Chapman and H all, London, 1994, vol. 3, p. 3128.
26 D. D. Perrin and W. L. F. A rmarego, in Purification of L aboratory Chemicals, Pergamon Press, Oxford, 1988.
27 A. I. Vogel, in Textbook of Practical Organic Chemistry, ed. B. S. Furniss, A. J. H annaford, P. W. G. Smith and A. R. Tatchell, Longman Scientific and Technical, H arlow (E ssex), 1989.

